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ITERATIONS OF LINEAR BOUNDED OPERATORS 
AND KELLOGG'S ITERATIONS 

I. MAREK 

Praha 

The purpose of this paper is to show that the existence of a fixed point of a special 
type is a sufficient condition for the convergence of the Kellogg iteration process for 
determining eigenvectors and eigenvalues of linear bounded operators in Banach 
spaces. It will follow from arguments given below that Kellogg's and probably similar 
methods can be applied to such a class of problems for which the existence of fixed 
points of certain type is guaranteed for the corresponding operators. 

It can also be shown on the example of the Kellogg iteration process, how such 
a general approach to the convergence problem makes it possible to drop unimportant 
assumptions such as the symmetry or compactness of the investigated operator. 

The basis of the proofs is the application of operator calculus of linear operators 
in the Banach space ([2], [3], [5]). 

Let X be a complex Banach space, X* its adjoint space of continuous linear 
forms. We denote the null-vector of the space X by the symbol O. Let Xt be the Ba­
nach space of linear bounded operators mapping the space X into itself. We denote 
the identity operator by the symbol J. Let a(T) be the spectrum of the operator T. 

The point }i0 is called the dominant point of the spectrum of the operator T, if 

\A < M 
holds for every point X e <x(T), X # ju0. 

Let {x*}, {)/*}, {z*} be such sequences of linear forms of X* that elements 
x* G X*, y* e X* exist for which 

(1) x*(x) = lim x*(x) , 

y*(x) = lim yt(x) = litn zџ

m(x) 

hold for every vector x e X. 

Let 

ßi = — ľя(A,T)dA, 
27tí Ј 

Co 

= (T - џ0J) Bk, k=í 

where R(X, T) = (XJ — T) 1 and C0 is a circle with centre n0 and int C0 n a(T) = 

= {/-to}-
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Let the following assumptions hold in the next t heo rems : 

(A) The operator Tis a linear bounded operator mapping X into itself. 

(B) The value //0 is a pole of the multiplicity q of the resolvent iv(A, T). 

(C) The value li0 is the dominant point of the spectrum of the operator T. 

Theorem 1. In the norm of the space X± we have 

-q + 1 

m~>oo \H l)-

Let x(0) e X be such a vector that B1x(0) 4= O, so that such an index s, 1 _ s _ q 
exists, that 

(2) B s x<°>*o , Bs+1x<°> = o, 

and let 

(3) A - V H O , yW>)*Ot „0 = _£f-!L. 
x*(Bsx

{U)) 

We can construct Kellogg's iteration process: 

(4) xím) = Tx(m~l) 
xt 

(5) !V) „*/v(m) 

<m) 4 ( * ( " " ) ' 

_ z*m(x(m+Ҙ 

Theorem 2. Lel (i) hold for the forms x£, y^, z^ arzd /er (2), (3) hold for the 
vector x(0) e X. 

Then 
lim x(m) = x0 
m->oo 

holds for the sequence (4) in the norm of the space X and 

lim (̂W) = Mo • 
m-+ oo 

Using the operational calculus method it is possible to prove the convergence of 
the Schwarz — Collatz [1] and Birger — Kolomy [4] type iterations. 

The results which are valid for linear bounded operators can be extended in the 
usual way to the case of characteristic values of equation 

Lx = ?Sx , 

where L and B are generally unbounded linear operators mapping its domains D(L), 
D{B) into X and the inclusion D(L) c= D(B) is correct. 
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