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COLLARED SETS 

E. MICHAEL 

Seattle 

The results presented here were obtained jointly with MORTON BROWN; the 
important Corollary 3 was obtained by him alone before our collaboration began. 

A subset A cz X is collared in X if there exists a homeomorphism h from 
A x [0, 1) onto an open U ZD A such that h(a, 0) = a for all a e A. Moreover, A is 
locally collared in X if each a e A has a neighborhood in A which is collared in X. 

Theorem 1. A locally collared subset of a metric space is collared. 

Corollary 1. The boundary of a manifold with boundary is collared. 
Now call A cz X bi-collared in X if [0, 1) is replaced by ( — 1, 1) in the above 

definition of collared, and similarly for locally bi-collared. The "equator" of a M6-
bius band shows that a locally bi-collared set need not be bi-collared (although see 
Theorem 3). However, we have 

Corollary 2. A locally bi-collared compact (n — i)-manifold in En is bi-
collared. 

Combining this result with the "Generalized Schonfliess Theorem" of M. BROWN 

and M. MORSE, one obtains 

Corollary 3. (M. Brown.) A locally bi-collared (n — l)-sphere in En can be sent 
onto the unit sphere by an autohomeomorphism of En. 

Now call A cz X multicollared in X if there exists an / : A -*-> A (the double 
arrow means onto) such that 

(a) / is continuous, closed, and (compact, 0-dimensional)-to-one, 

(b) there exists a homeomorphism h from Mf (the "decapitated" mapping cy­
linder of / ) onto an open U ZD A such that, considering A cz Mf9 we have h(a) = a 
for all a e A. 

We denote the set of all such/ by M(A, X). 

Theorem 2. If A cz X metric, and fi:Ai^-^A(i = l,2) are in M(A9 X), then 
there exists a homeomorphism h \ Ax-+-* A2 such that fx = f2 o h. 

Call A cz X double-collared in X if there exists a n / i n M(A, X) which is a (pos­
sibly trivial) double covering of A. (In the trivial case, this reduces to bi-collared. The 
equator of a Mobius band is double-collared without being bi-collared; locally, 
however, these two concepts coincide.) 
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Theorem 3, A locally multicollared subset of a metric space is multicollared. 
Similarly for double-collared. 

Suppose now that A is a multicollared subset of E\ and that f: A ->- A is in 
M(A, £"). Note that a closed interval or triod are both multicollared in the plane, 
with A a circle. In general, every component of A must be a manifold (compact if A is) 
if n _" 3. S. JAWOROWSKI has shown that, for A compact, A and En — A have the same 
number of components. 

Now consider a finite, connected (n — l)-subcomplex K of £n, all of whose 
simplices are faces of (n — l)-simplices. In general, K need not be multicollared in E\ 
although it is if n = 2, or n = 3 and the star of each vertex is connected. Nevertheless, 
one can always canonically define an (n — l)-complex K, and a simplicial, finite-to-
one f : K -»-» K, such that tfK is multicollared in £", then f is in M(K, En). 

Here is a p rob l em: 
Is the union of all multicollared subsets of a finite-dimensional metric space again 

multicollared? 
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