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ON URYSOHN'S LEMMA 

C H. DOWKER and DONA PAPERT 

London 

In this paper we show how a well known non-tautological theorem of point-set 
topology can be proved in frame theory, that is in topology without points. The results 
are not new but were proved in the unpublished Cambridge dissertation: Dona Papert, 
Lattices of functions, measures and point sets, 1958. 

A partially ordered set is a set Lwith a relation = , such that 

1) if a = b and b = c then a ^ c9 and 
2) if a = b and b _ a then a = b9 

A complete lattice is a partially ordered set such that 

3) every subset A of L has a least upper bound. 

The least upper bound is unique and is usually called the join of A and written 
V-4 or, in terms of elements, \/aa or ax v a 2. Let 1 = \/L; then 1 is the greatest 
element of L. Let 0 = \/09 where 0 is the empty set; then 0 is the least element of L. 
The operation v is associative and commutative, for the join depends on the set A9 

not on the arrangement of its elements. 

If B is the set of lower bounds of A9 each a e A is an upper bound of B and hence 
\/B = a. Thus \/B is a lower bound of A. This greatest lower bound of A is called the 
meet of A and written /\A9 /\aa or a, A a 2 . Clearly /\L = 0 and A0 = 1. 

The topology T of a space X9 that is the set of all open sets of X9 is a complete 
lattice with the relation £ . For any family {Ga} of open sets, the join V^ a is the 
union \JGa and the meet /\Ga is the interior of the intersection f)Ga9 thus Gt A G2 = 
= Gxc\ G2. The elements 0 and 1 of Tare 0 and X. 

A frame is a complete lattice satisfying the distributive law 

4) a A V^a = V a A ba. 

In particular a A (b v c) = (a A b) v (a A c). Also we have a v (b A C) = 
= (a v fo) A (a v c), for (a v b) A (a v c) = ((a v b) A a) v ((a v b) A C) = 
= a v (a A c) v (b A c) = a v (b A C). From 4) by commutativity we have 
(V««) A 6 = v(a a A b). Applying 4) again gives \/aa A \/bp = \/(aa A \/bp) = 
= VaV/?aa A bp9 and, by induction, \/aa A \/bp A .. . A \/cy = VaVs • • • Vyaa A 

A fr/j A •.. A cy. The topology Tof a space X is clearly a frame. 
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If Land M are frames, a function <p : L -> M is called a, frame map, or simply 
a map, if (p\/aa = V<Paa f° r e a c h family {aa} and q> Aai = A(Pai f° r e a C l 1 finite 
family {aJ. In particular, when the families are empty, we have <D0L = 0M and 

<P!L = !M-

Let Xt, X2 be spaces with topologies Tt, T2, and let / : Xl -> X2 be a con­
tinuous function. For each G e T 2 , f~lGeTt. Also f~l \/Ga = f~l \JGa = 
= U T ' G * = V r 1 ^ , and, for finite families { G J , / " 1 AG, = Z" 1 f|Gi = 
= n / 3 ^ , - = Af~^Gr Thus / _ 1 : T2 -> Tx is a frame map. We shall now show 
that all frame maps of topologies of Hausdorff spaces are obtained thus from con­
tinuous functions. 

Theorem 1. If Xl9 X2 are spaces with topologies Tu T2, if X2 is a Hausdorff 
space and if (p : T2 -» Tt is a frame map, there exists a unique continuous function 
f : Xx -> X2 such thatf'1 = <p. 

Proof. For any point x e Xi9 let G be the union of all open sets Ga of X2 for 
which x $ <pGa. Then (pG = <D \JGa = {J(pGa9 so x <£ q>G. Thus G is the greatest open 
set of K2 for which x $ (pG. 

Since <D1 = 1, that is <DX2 = Xl9 and since xeXl9 hence G 4- X2. Let ye 
eX2 \ G. If z is any other point of the Hausdorff space X2, there are disjoint open 
sets U9 V with yeU, z e V. Then <pU n <pV = <p{U n V) = <l>0 = 0. Then x e <pU, 
x <£ <DV, so V' c G and z e G. Thus there is only one point y eX2 \ G. 

For each x e Xt9 let/(x) be the point of X2 not in max {G : x <£ <DG}. Then for H 
open inX29f(x)eH if and only if x e (pH; that i s / - 1 i f = <pH. T h u s / - 1 H is open, 
s o / i s continuous. And we have/""1 = 9. 

If g : X! -> X2 is another continuous function, choose x e Xt for which g(x) =f= 
=t=/(x). LetH = X2 \ (g(x)). Then xef~1H = (pH but x <£ g_1H. Thus g'1 # <p. 
This completes the proof. 

A base B of a frame Lis a subset of Lsuch that every element of Lis a join of 
elements of B. 

Theorem 2. Let Land M be frames, let B be a base of Land let <p : B -» M be 
a function such that if {bt} is finite and A^i = Vca then A^bi S V^a- Then <p 
extends to a frame map \i\L-* M. 

(When the family {fcj is empty, the hypothesis states that if 1 = \/ca then 
1 = \/<pca. In particular \/ <pc = 1.) 

ceB 

Proof. For h e L we define \ih = V <P&- If & ^ c in B then <pb ^ <pc. Thus 
beB,b^h 

for c e £ we have Lie = y <?*> = <*>c Thus Li is an extension of <p. 
b^c 

If ft £ fc then Lift = v <Db ^ V 9&; hence Lift ̂  Lifc. 
5^/i bSk 
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For a finite non-empty family {ht}, i = 1, ..., n, we have 

/\fiht = \/ cpa A \/ cpb A ... A \/ cpc = \/ ... \f cpa A ... A cpc . 
a<.hi b<,h2 c<;hn a^hi c<,hn 

Since a A ... A C = /\ht = y b, hence by hypothesis 
b<.Aht 

cpa A ... A cpc = V (pb = fi /\ht. 
b<.Aht 

Thus /\nhi ^ ft /\ht. But since /\ht ^ hh ft A^t = /x/i,-, and hence fi /\ht <L A / ^ r 
Therefore û A^i = A / ^ r 

In case {h j is empty this is still true, namely fil = 1, for /il = y (pb = 1. 
b<l 

For any family {ha} we have /x V^« = V <pb. When b = V^a = Va V r> 
ft^V/ia ceB,c^/ia 

then (pb ̂ ya y (pc = yapiha. Hence /z V^a ^ V/^a- But since N/̂ a =" K> V> V^a = 

= /iha for each a and hence fi yha = yfiha. Thus in each case fi yha = yfiha. 
Thus ft is a frame map, as was to be shown. 
A frame Lis called normal if, whenever u v v = 1, there exist g, h such that 

gvv=l, w v h = 1 , g A h = 0 . 

Clearly the topology of a space X is normal if and only if X is a normal space. 

Theorem 3. If L is a normal frame and u v v = 1 in L there exists a frame 
map fi : TR -» L, where TR is the topology of the real line R, such that fi(R \ (0)) :_ 

= u, fi(R \ (1)) = t>. 

Proof. Let Q be the set of rational numbers. We shall construct gp, hpe L for 
p e Q so that gp A hp = 0 and, if p < q, gp v hq= I. When they are thus defined 
for p and g with p < q we have hp = hp A I = hp A (gp V hq) = hp A hq, so 
hp = h€, and also gq = gq A I = gq A (gp v hq) = gq A gp so gp = # r 

The rationals between 0 and 1 are countable; call them rl5 r2,... Let Qn consist 
of all the rationals ^ 0 or = 1 and rl9 r2, ..., rn. For p e Q0 we define gp, hp as follows: 
gp = 1, hp = 0 for p <0; g0 = u, h0 = 0; gx = 0, h1 = v, gp = 0, hp= I for 
p>l. 

Suppose gp, hp have been defined for p e Qn. We now define gr, hr for r = rn+1. 
Take the greatest p e Qn with p < r and the least q e Qn with q > r. Then p < q and 
gfp v h^ = 1. By normality there exist gr, hr for which gr v hq = 1, gp v hr = 1, 
gr A hr = 0. If s e Qn+1 and s < r then s ^ p, gs ^ gp and gs v hr = 1. If s > r 
then s §: q, hs = h€ and gr v hs = 1. Thus #s, hs with the required properties are 
defined for all s e Qn + 1. Hence by induction they can be defined for all s e Q. 

Take the base B cz TR consisting of all open intervals (x, y) with x < y. The 
function (p : B -> L is defined by 

(p(x, y)= V gpAhq = ygpAyhq. 
x<p<q<y x<p q<y 
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Let (x^ yt), i = 1, ..., n be a non-empty finite family of intervals, and let (xa, ya) 
be a family of intervals such that 0(xh yt) .= \j(xa, ya). Then 

A<p(xi9 yt) = ( V gPi A hqi) A ... A ( V 9Pn A h j 
*l<Pi<«2l<;Vi ^ n < p n < q n < y n 

= V ... VgPl A hqi A ... A gPn A h^n 

= V • • • Vgmaxp A fcming 

V 9p * hq 
maxjc t<p<q< miny ,• 

= <p no*,-- y,-). 

For any rational numbers p, q such that max xt < p < q < min yh the compact 
interval [p, q] is contained in \J(xa, ya) = \J \J (r, s) for r, s rational. Hence 

a a xa<r<s<ya 

[p, g] is contained in some finite number of these intervals (r, s), so the open interval 
(p, q) is a finite union U(rj- sj) °f SUCl1 intervals. We may assume that no (rj9 ŝ ) can 

j 
be omitted from the union and that (rj9 Sj) overlaps (rj+1, sj+l). 

If r < t < s < u we have (gr A hs) v (gf A hM) = (gr v gr) A (gr v hM) A 
A (hs v gr) A (/ts v hu) = gr A hM. Hence gp A hq = \/grj A hSj ^ V<K*a> y*)« 
Hence A<K*», ^ ) ^ V<K*«, ya)-

If U(^a, ya) = # then ( - 2 , 3) c U(^a? y«) and hence 1 = g_j A h2 ^ 
^ <JO(--2, 3) <; V<p(xa,ya). Thus A<p(xi9 yt) SV<p(xa9 ya) even when the family 
(x,-, yf) is empty. Therefore cp extends to a frame map \i : TR -> L. 

If x < j < 0 then (p(x, y) = 0. If 0 < x < y then for x < p < q < y we have 
gp A hq ^ g0 = M, and hence <p(x, y) ^ u. Hence fi(R \ (0)) = V <p(x9 y) ^ w. 

0*(*,y) 

If x < y < 1 then for x < p < q < y we have gp A hq ^ hx = v and hence 
<p(x9 y) ^ v. If 1 < x < y then <D(x, y) = 0. Hence LI(i? \ (l)) = V <p(x9 y) ^ v. 

H(x,y) 

This completes the proof. 

Theorem 4 (Urysohn). If E, F are disjoint closed sets of a normal space X 
there is a continuous real function f: X -> R such that f(x) = 0 when x e E and 
f(x) = 1 when x e F. 

Proof. Let U = X \ E, V = X \ F; then U u V = X. By Theorem 3 there is 
a map \x: TR ~» Tx, where Tx is the topology of X, such that ja(R \ (0)) <= U, 
fi(R \ (1)) 5= V. By Theorem 1, since R is a Hausdorff space, there is a continuous 
function f: X-> R such that f'1 = fi. Since /-^(.R \ (0)) <= L7,/(F) <= (0). And 
since / _ 1 ( R \ (l)) f= V, /(F) <= (l). This completes the proof. 
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