
Toposym 2

Jan Hejcman
Uniform dimension of mappings

In: (ed.): General Topology and its Relations to Modern Analysis and Algebra, Proceedings of the
second Prague topological symposium, 1966. Academia Publishing House of the Czechoslovak
Academy of Sciences, Praha, 1967. pp. 182--183.

Persistent URL: http://dml.cz/dmlcz/700859

Terms of use:
© Institute of Mathematics AS CR, 1967

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/700859
http://project.dml.cz


182 

UNIFORM DIMENSION OF MAPPINGS 

J. HEJCMAN 

Praha 

By the dimension dim of a mapping / : X -> Y, where X, Yare topological spaces, 
the number sup { d i m / - 1 ^ ] j y e Y} is usually understood (and similarly with ind 
instead of dim). Some authors considered in a certain sense stronger definitions of the 
dimension of mappings for metric spaces, e.g. uniformly zero-dimensional mappings 
[2] or, as a generalization, the strong dimension of mappings [4]. We define the 
uniform dimension of uniformly continuous mappings for uniform spaces. It is closely 
connected with the uniform dimension Ad (see [l]). Further, all mappings are sup­
posed to be uniformly continuous, uniformities are considered as systems of entour­
ages of the diagonal. 

Definition. Let (X, %), (Y, i^) be uniform spaces, / : X ~± Y a mapping. The 
uniform dimension of/, denoted by Adf, is defined as the smallest non-negative 
integer n with the following property: for each U in °U there exist Vini^ and Win % 
such that, if M is a subset of Yand M x M c V, then there exists a collection Jf of 
subsets of X such that Jf is a W-cover o f / _ 1 [ M ] , K x K c U for each K in Jf, and 
each point x o f / _ 1 [ M ] is contained in at most n 4- 1 sets of Jf. If such a number 
does not exist we set Adf = oo. 

I f / i s a mapping of a non-void uniform space X into a one-point space then Adf 
is equal to the mentioned zid-dimension of the space X (and therefore we use the 
same symbol Ad). 

If g is a restriction of a mapping/ then Ad g S Adf, if g is the restriction of/ 
to a dense subspace then Ad g = Ad f. If p is the canonical projection of a non-void 
product X x Yonto X then Ad p = Ad Y. 

The main results may be stated as follows. 

Theorem 1. LetX, Y, Z be uniform spaces, f: X -> Y, g : Y-> Z. T/ien zid(g o / ) rg 
^ 4 d / + zldg. 

Theorem 2. Let X, Y be uniform spaces, f : X -> Y. Trien Ad X ^ Ad Y + Adf. 

Theorem 3, Le£ {Ka | a e ^4}, {Ya | a e AL} be families of uniform spaces and 
bfa | a G A} a family of mappings, fa:Xa-> Ya. Ler/ : n i ^ a | a e A} -» f]{ y* | a G ^} 
{e defined by the formula f{xa} = {faxa}. Then Adf ^ ^Adfa. 
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If X is a uniform space and (R, Q) is a metric space, we shall denote by Cu(Xy R) 
the set of all uniformly continuous mappings of X into R, endowed with the distance a 
defined by 

<j(f, g) = min (l, sup {g(fx, gx) \ x e X}) . 

If R is complete then CU(X, R) is also a complete metric space. The following theorem 
characterizes the dimension Ad of pseudometric spaces by means of mappings into 
Euclidean spaces. 

Theorem 4. Let P be a pseudometric space, k, n integers, 0 :g k ^ n. Then the 
following properties are equivalent: 

(1) AdP ^ n, 
(2) there exists a mapping f: P ~» En~k with Adf ^ k, 
(3) the set of all mappings f: P -> En~~k with Ad f ^ k is a dense Gd~set in the 

space CU(P, En~k). 

The assumption of pseudometrizability of P is essential. Thus every metric 
space with finite dimension Ad can be mapped by a uniformly zero-dimensional 
mapping into a compact space. 

Nevertheless this assertion does not hold for arbitrary metric spaces. Indeed, 
suppose that every metric space admits of such a mapping. Then, according to 
Theorem 3, this is true for every uniform space. On the other hand, it can be proved 
that the <5d-dimension (see [3] or [1]) of a space admitting of such a mapping is 
equal to its zld-dimension. This is a contradiction since these dimensions need not 
coincide for an arbitrary uniform space. 

Theorems 2 and 4 are analogous to well-known Hurewicz theorems. We also 
obtain some results for the dimension dim as we have the following 

Theorem 5. Let X, Y be compact Hausdorff spaces, / : X -> Y. Then dim/ = 
= Adf. 

A paper containing the proofs of all theorems is intended for publication in 
Matematiceskii Sbornik. 
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