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SYMMETRIC APPROACH TO THE FUNDAMENTAL 
NOTIONS OF GENERAL TOPOLOGY 

J. SCHMIDT 

Bonn 

1. The notions 33, C, jSf, s/. BIRKHOFF was the first to consider the interrelations 
between different fundamental notions of set-theoretic topology as Galois cor­
respondences (Galois connexions) in the sense of ORE. In this communication, we 
are going to deal with the notions 

33 like voisinages (neighbourhoods), historically connected with the name of 
HAUSDORFF; 

C like closure, connected with the name of KURATOWSKI; 

££ like limit, connected with the name of FRECHET; 

s/ like adherence (set of cluster points) as considered by BOURBAKI, but as it 
seems without connection with any classical author (the first published study of si 
as a fundamental notion seems to be by GRIMEISEN [11]). 

To be more precise, we consider some fundamental set, the carrier or space X. 
Then 33 may be considered as a — in the first stage quite arbitrary — binary relation 
between X and power set ty(X)9 33 c X x ty(X). So according to the scheme of 
general binary relations, with each point x e X is associated its neighbourhood 
system, i.e. the set 

33x = {A | (x, A) e 23} 

of all point sets A a X such that the couple (x, A) is in the relation 33; so the latter, 
i.e. A e 33x, may be read "A is a neighbourhood of x". Naturally, 33 might as well be 
thought of as some onevalued mapping 33 : X ~> ^(^(K ) ) . On the other hand, the 
interpretation of 33 as a binary relation enables us to form the converse relation 
33"1 c y(X) x X, 

( ^ , x ) e33~ 1 iff (x ,_4)e» 

so that there is associated with point set A c X the point set 

» - 1 A = {x | (x ,A)e33} 

which might be called the interior of A; accordingly x e 33 ~ lA might be read "x is an 
interior point of A". 

Second, we may consider C as a — in the first stage quite arbitrary — binary 
relation of the same type as 33 ~*, i.e. C cz ^(X) x X, so that with each point set 
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j B c l i s also associated the point set 

CB = {x | (B, x) G C} 

usually called the closure (abgeschlossene Hiille, adherence) of B, consisting of all 
points x such that the couple (5, x) is in the relation C. For the latter, i.e. x e CP, 
unfortunately there is no generally accepted terminology in the English literature; in 
German, x e CB is read "x ist Beruhrungspunkt von J3" (ALEXANDROFF-HOPF) in 
French, "x est point adherent a B" (BOURBAKI). Besides there are well-known non-
topological situations, when one reads xeCB or B Cx as "x depends on 5" . Again, as 
is most frequently done in topology (but curiously enough not in abstract dependence 
theory!), one may also consider as some one-valued mapping, the closure operator 
C : ty(X) -» ^3(X). Still the relational point of view enables us to form the converse 
relation C _ 1 c= X x ^3(X), of the same type as 33, and so to associate with each 
point x e X the set 

C" 1* = {B\(E,x)eC} 

of all point sets B a X which might be said to "touch" ("beruhren" in German) x, or 
to adhere to x such that C _ 1x might be called the adherence system associated with 
point x. 

Third, ££ may be considered as a — in the first stage quite arbitrary — binary 
relation between the set $>(X) of all filters on X and space X itself, 5£ <= <P(X) x X, 
so that with each filter (or equivalently — for those prefering a more analytical 
language and not minding a more complicated technique — : net) 23 is associated a 
point set 

Jz*23 = {x | (33, x) e S£} 

which might be called the limit set of 23 since its points x are usually called the limit 
points (Grenzwerte, points limites) of 23, the converse relation, ©e<5f~1x, being 
read as "23 converges to x". Let us remember that in more general situations, namely 
in the topological theory of nets of points sets (instead of nets of points), <=S?23 is most 
frequently spoken of as the lower or inferior limit (Limes inferior, ensemble-limite 
inferieure). 

Last, J / may be considered as a — in the first stage quite arbitrary — binary 
relation of the same type as S£, si c $(X) x X, the set 

^23 = {x | (33, x) e stf} 

being called the upper or superior limit (Limes superior or Adharenz, ensemble-limite 
superieure or adherence), its points the cluster or accumulation points (Haufungs-
punkte, Beriihrungspunkte, points adherents) of filter 23. 

2. Transitions between these notions are established by the following 12 statements 
holding as elementary propositions in general topology: 



310 J. SCHMIDT 

(» - c) 

( » - sá) 

(aз - se) 

(C - „*) 

(C-JSP) 

( J / - JS?) 

x e З J ч Л o Л ( x є C ß =>A*B) 
в 

x є 33 ~ ' A o A{x є J*ЭЗ => A * 35) 
33 

x є 93 ~ lA o Д ( X Є JS?33 => A є 93) 
зз 

x e C A o V ( x є Л л / l є 33) 
83 

x є CA o V(x є SЄЧ& л A * 33) 
sв 

x є jaГ̂ Г <=> y(x є JS?33 л Ћ * 33) 
Я5 

x є Cß <=> Д(x є »~ ' A => A * B) 
л 

x є ^33 o Д(x є 9Г U => A * 33) 

x є JSřЗЗ o Д(x є 93" 2 A => A є 93) 

x e J / 3 3 o A(* £ CA <= A e 93) 
A 

x e JS?93 o A{x e CA <= A * 33) 

x e JS?93 o A(x e sčll <= 9Í * 33) 
31 

Here A * B means "set A intersects set B", i.e. A n B =J= 0. .4 * 23 means "set Al 
intersects filter 23", i.e. Al * B for all sets B e 23, classically: "(infinitely) many members 
of net (sequence) 23 are in set A" or "have property A"9 "net 23 is frequently in AL". 
Dually, Ale 23 has the classical meaning and may be read: "almost all members of 
net (sequence) 23 are in set A" or "have property A"9 "net 23 is eventually in A". 
Finally, 21 * 23 means "filter 2t intersects filter 23", i.e. A * B for all sets A e 21, 
B e 23; this is what has been called "compatible" by SAMUEL, "compositive" by 
SMILEY (who had taken this term from the unknown work of E. H. MOORE). In the 
complete lattice <P(X) of all filters including the improper filter, i.e. the full power 
set ^P(K), as lattice unit, 21 * 23 means that the supremum of filters (sum of dual 
ideals) 21, 23 is a proper filter, i.e. unequal to ^(X). Remembering that sets A a X 
are in a natural one-to-one correspondence with principal filters [/l, Xj = {F j A c 
c F c X}, we may consider this compatibility relation * as an extension from the 
domain of principal filters to that of all filters, principal or not. Still it should be 
emphasized that within this wider domain, relation * has not been used in classical 
analysis; 21 * 23 may be understood as "nets (sequences) 21, 23 have a common refine­
ment" or — in a fairly wide sense — "a common subnet (subsequence)". In fact, 
classical analysis carefully avoided this relation between nets (sequences) by replacing 
the two statements (s4 — S£) by the usual formulas 

(1) x e j / 2 t o M(x e S£*& A 21 c 23) , x e S£*& o f\(x e ^21 <= 21 => 23) ; 

x is a cluster point of sequence 2t iff there is a subsequence 23 converging to x, x is 
a limit of sequence 23 iff x is a cluster point of all subsequences 21. Under self-evident 
monotony assumptions on s/ and S£9 these two classical statements are equivalent 
with (stf — S£) of our list; but it is by this very list, by its intrinsic analogies, sym­
metries, and dualities that the naturalness of the relation 21 * 23, instead of the classical 
relations 21 cz 23 and 21 ID 23, is emphasized. What is most striking: the classical 
formulas (l) do not describe a Galois correspondence as we shall see (s/ — S£) does, 
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since in both formulas of (si — j£?) the same relation 91 * 23 occurs, whereas in the 
formulas (1), we really have two different relations, 91 cz 93 and 91 => 93. 

Besides, extending relation * still further from filters to quite arbitrary set-
systems (sets of sets), we may reformulate (33 — C) 

(2) A e 33x oA*C~lx, Be C^1* o B * 2U , 

or in the shortest possible notation 

(3) » x - ( C " 1 * ) * , C - 1 * - (SBJC)* , 

where in general S* denotes the system of sets intersecting system S. By the last 
formulation, it becomes particularly suggestive that with each point x there are 
associated really two systems, one being the *-system of the other: so HAUSDORFF'S 

and KURATOWSKI'S classical approaches appear as — in a strict sense — dual to each 
other. 

There are also more concentrated formulations for the other statements of our 
list. For instance, the second formulas of (93 — si) and (9? — ££) may be written 

(4) x e ^ 9 3 <-> <Bx * 23 , 

(5) x e J&f S3 <-> 93* c 33 . 

In particular, if 33x were a filter, the neighbourhood filter of x, it would become the 
smallest filter — a representative of the coarsest net converging to x. 

Further abbreviations in the form of set-theoretic identities: 

(6) 33x = n » * , 

(7) 9?x = n 23 ; 
xe&$8 

(8) CA = U ^ © , si'B = C\CA, 
Aei& Ae$B 

(9) CA = U <^93 , JS?S3 = n CA 
A*$5 A*$& 

(10) sin = U JSf93 , JS?33 = n .**2t. 

Again, under a weak monotony assumption on si, the first formula of (C — si) is 
equivalent with 

(11) CA = si{A,X}, 

so the adherence of set A appears to be nothing but the adherence of the associated 
principal filter jj/1, Z ] , and operator si: <P(X) -» ty(X) as an extension of operator 
C : ty(X) -+ *$(X). Finally, under the dual monotony assumption on $£\ the * in the 
first formula of (9) might be replaced by e (as has been usually done in classical 
analysis); yet this would-be perfectly impossible in the second formula: otherwise — 
as comparison of (8) and (9) shows — no distinction would be left between si and J2?. 
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3. Pairs of transitions considered as Galois correspondences. Returning to our 
original list of transition formulas, we may say that they define 12 possible maps 
between the sets of all 33, C, sf, and Se respectively. So (33 — C) associates with each 
arbitrary neighbourhood relation 33 a definite closure (or dependence) relation C = 
= Csg, and with each arbitrary closure relation C a definite neighbourhood relation 
33 = S c , etc. Now the couples of transition mappings 

Ci->33 c , 33i->C-3, 

stf f-> 33^ , 33 *-> stfm , 

ot> I - ^ "13" cp , '•15 r~> =Z^Qf> 

as defined in (33 — C), (33 — stf), and (33 — Se) are Galois correspondences in the 
sense of ORE: they are anti-monotone with respect to inclusion (remember that 33 
C, stf, and Se\ as binary relations, are subsets of some cartesian products, so inclusion, 
i.e. the usual comparison of binary relations, makes sense); moreover the twofold 
mappings, e.g. 

C н " Cү Жь+ЗЗ, Cçз 

are closure operators. Analogously, (C — stf), (C — Se), and (stf — Se) define 
couples of mappings which are Galois correspondences in some dual sense called of 
mixed type in [18, I I ] : the simple mappings themselves, e.g. 

r ^ C ^ 5 C n r f c , 

are monotone with respect to inclusion, and of the twofold mappings 

the first is again a closure operator, whereas the second is of dual type, a kernel 
operator (monotone, idempotent, but intensive, C^ cz C, not extensive). 

4. The main questions about these Galois correspondences are answered by 

Theorem. 

C = C™ <=> C monotone 

Stfi 

o Z JY 

Ю . * ' 
stf continuous from below 

Se pretopological 

® = 33,. <=> 33 monotone 

33 = 33 ̂  <=> 23 monotone 

35 = 33c 33 pretopological 

= s/c <=> sf continuous from below 

• Se pretopological 

Se = && <=> Se pseudo-topological 
c = câ 
sé = sé se sś 

o C monotone 
<=> C pretopological 

sé pseudo-topological 
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Here monotony of 23 means that, for each point x, system 23x is monotone, i.e. 
A cz AL'(czX) A A e 23x => Af e 23x. Analogously, monotony of C means that, for 
each point x, system C~ xx is monotone, equivalently: that operator C : ty(X) -> ty(X) 
is monotone in the usual sense B cz JB'(czK) => CB c CB' (the equivalence of this 
condition with C = C-g going back to MARKOFF). That 23 is pretopological means 
that, for each point x, 23x is a filter (proper or not) on X. Dually, that C is pretopologi­
cal means that, for each point x, C _ 1 x is a grillage (French: grille) as defined by 
CHOQUET, i.e. just the *-system of a filter; or in better known terms: that operator 
C : ty(X) -> ty(X) preserves finite (including the empty) unions: C ^ u B2) = 
= CB1 v CB2, C0 = 0. 

For the description of the properties of si and S£ as quoted in the Theorem, let 
us remember the following two fundamental composition laws (cf. [18,1], also DIENER 

[7]) in the complete lattice <P(X) of all filters on X: 
(t) the composition from below: each filter g e $(X) is the lattice-supremum, 

even the set-theoretic union of an upwards directed set of principal filters ^3, the latter 
being precisely the finitely generated filters or, in lattice-terms, the inaccessible 
filters, i.e. those which cannot be represented as suprema of upward directed sets of 
other filters, those which are indecomposable, irreducible, or prime with respect to 
this composition from below; 

(|) the composition from above: each filter J$f e <P(X) is the lattice-infimum, i.e. 
the set-theoretic intersection of a set of ultrafilters 2(, the latter being precisely the 
totally meet-irreducible filters, i.e. those which cannot be represented as meets 
(lattice-infima) of any sets of other filters, those indecomposable with respect to this 
composition from above. 

As we have seen, si may be considered as an extension of C from the domain of 
principal filters S$ (the prime elements of the composition from below) to arbitrary 
filters 5- Now, the continuity from below as quoted in our Theorem demands that 
this extension is not arbitrary, but 

(12) si = s£, 

where by definition 

(13) ^g := (\si^ = (\s/lP9X\. 

Let us remark that in general 

(14) si, s£ cz siQ^ = sf^ . 

Our Theorem states that continuity from below, si = si, is equivalent with si = 
= ^c^> more explicitly 

(15) si% = n u ^ £ 
Ge% Gefy 
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(which condition has been considered by GRIMEISEN). Finally, a nearly immediate 
equivalence for si = s4_ is the equation 

(16) si U © = n ^ © (for any upwards directed T c <P(X)) . 
©eF ©ef 

Associated with the composition from above, there is the continuity from above, 

(17) si = ^ 

where by definition 

(18) 3% : = U siVL = U n ^ £ • 
u ^ g ©=>$ $=>© 

0*® 0*£ 

By definition, these continuous from above operators si : <P(X) -» S*P(K) are in 
one-to-one correspondence with their restrictions to the domain Q(X) of ultrafilters IX, 
these restrictions si\Q(X) : Q(X) -» ty(X) (due to the incomparability of ultrafilters) 
being completely arbitrary mappings, called pseudo-topologies by CHOQUET [6]; 
hence we may call any continuous from above si also pseudo-topological as in our 
Theorem. Let us remark that in general 

(19) si, si 3 si*^ 

Our Theorem states that continuity from above, si = si, is equivalent with si = 
= si % , more explicitly 

(20) si$ = u n ^§>. 

As a consequence of continuity from above, one has the equation 

(21) si n © = U ^ © (for any finite T c <2>(X)). 
<3eT (BeT 

Mind that this equation is really weaker, whereas its generalization to completely 
arbitrary sets T c <P(X) would be much stronger than continuity from above. Yet 
combined with continuity from below, condition (21) (for finite sets F) is equivalent 
with continuity from above. A relation si at the same time continuous from below 
and from above might be called continuous or pretopological. 

Coming to speak about the properties of limits as involved in our Theorem, we 
are re-entering historical ground. Somehow, the situation for «£f is not so pretty as it 
was for si, since for ££, there is no continuity from below, only continuity from above 
as given by 

(22) if = & , 

where by definition 

(23) z%: = n ^ u = n U ^ 5 
u>s ®=>$ %=>& 

0*® 0*fc 
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(the reader will excuse our use of the same symbol both for $/ and the dual j£f!). 
Again, the continuous from above limit operators S£ : <$(X) -> ty(X) are in one-to-
one correspondence with their restrictions J£\Q(X), i.e. with all mappings (pseudo-
topologies) Q(X) -* ^P(K); again, any continuous from above Se is also called 
pseudo-topological as in our Theorem. So one obtains any pair of linked pseudo-
topological operators sf, Se by extending a quite arbitrary mapping Q(X) -> S$(X) 
in two evident dual manners; then in particular s/\Q(X) = Se\Q(X). Let us remark 
that in general 

(24) <?,?<= jr^^&cx^&mx-

Our Theorem states that continuity from above, S£ = J?, is equivalent with Se = 
= S£si^ more explicitly 

(25) jspg = n U se§. 

Again, as a consequence of continuity from above, we obtain 

(26) Se n © = n ^ © (for any finite F c &(X)) . 
&er mr 

Again, this equation is really weaker then continuity from above, whereas its generali­
zation to arbitrary sets F, 

(27) Se f| © = n ^ © (for any F c <P(X)) , 
@6E &er 

is much stronger: in fact, any S£ with this stronger condition is defined as con­
tinuous or — as in our Theorem — pretopological. Our Theorem states that this 
continuity is equivalent with Se = £?c^ more explicitly 

(28) se% = n n ^ o . 
^*G G*^ 

Let us remark that one may equivalently decompose continuity, i.e. equation (27) 
(F arbitrary), into equation (26) (F finite) and the additional equation 

(29) Se n © = n <£?© (for any downwards directed T c <f>(X)) , 

such that (29) and (26) constitute a pretopological axiom system for limits somewhat 
dual to the pretopological axiom system (16) and (21) for s/. 

Historical comment: Starting from an arbitrary S£, S£ as defined in (23) is nothing 
but the generalization to arbitrary filters of the afterwards so called star-convergence 
as introduced for classical sequences (elementary filters) by URYSOHN in order to fill 
up a gap in the axiom system for limits as given by FR£CHET (which was the first 
axiomatic approach to General Topology). In fact, S£ = S£, our continuity from 
above, is the generalization of URYSOHN'S classical axiom as formulated by KURA-

TOWSKI [17] and others; funny to note how one can manage to escape the use of 
ultrafilters by considering subsequences of subsequences according to identity (23). 
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On the other hand, within the area of general filters (nets), there are really three 
different modifications of star-convergence, namely S£9 S£^ 9 a n d S£c = S£<% , 
linked by inclusions (24). Note that S£ = S£ & under some weak monotony assum­
ption on S£; but even then ££& and S£C£e will still differ (this was not the case for 
classical sequences, cf e.g. KURATOWSKI [17]!); accordingly, continuity (the preto-
pological property) is much stronger than continuity from above (the pseudo-
topological property). 

5. Commutativity of transitions. The task of proofs of all these statements can be 
reduced by systematic use of the commutativities in the diagram of our 12 transition 
mappings between the sets of all 33, C, s/9 and S£ respectively. In fact, from the 
possible commutativities, all 24 = 4 x 6 (4 = number of triangles in the total 
diagram, 6 = number of possible commutativities in any of these triangles) hold in 
topological spaces: this was the observation we started from. Now we can prove — as 
a necessary addition to our Theorem — that all 24 commutativities already hold in 
our pretopological spaces, i.e. under the pretopological assumptions described 
above. More generally, most of these commutativities only presuppose much weaker 
hypotheses or no hypothesis at all. E.g. concerning the triangle (33, C, s/)9 we have 
the identities 

C s = C ^ , s/^ = s/Cm , 33^ = 33c^ , C^ = C ^ 

for completely arbitrary 33 and s/9 for arbitrary C also the inclusions 

93 c <= ®*?c > <**c <= <^®c > 

where equality holds iff C is monotone. Hence we obtain a pairwise bijective com­
mutative triple correspondence between all monotone 33, all monotone C, and all 
continuous from below s/. Moreover, the pretopological property of one of these 
three leads to the pretopological property of the corresponding two others. In 
a similar manner, one discusses triangles (33, C, S£)9 (33, s/9 S£)9 (C, s/9 S£). In the 
end, we have a pairwise bijective commutative quadruple correspondence between all 
pretopological 33, C9s/9 and S£9 such that a pretopological structure on set X may 
be established in four different, equivalent languages. We may even define a pretopo-
logy on set X as a quadruplet T = (33, C, s/9 S£) where each of the four associated 
pretopological components determines the other three. 

This is the occasion for one additional remark. So far, the points x have been — 
quite naturally — assumed to be just the elements of carrier X; funny to note that 
without this assumption, the essence of our considerations remains valid without 
modifications. The generalization possible by this remark would be for fun only 
unless there were the so-called 8- or proximity spaces of EFREMOVITCH and SMIRNOV 

(cf. CECH [4]), invented as abstract approaches of uniformities in General Topology. 
These (5-spaces come into our considerations if we now specialize the points x to be the 
subsets of carrier X instead of its elements. In fact, our binary relation C then comes 
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to be nothing but the proximity relation C c ty(X) x ty(X) usually denoted 8 or p, 
and our pretopological axioms for C, i.e. that C _ 1x is a grillage (grille) for each 
"point" x e K, is nothing but a part of the usual proximity axioms. Again, we may 
pass to the operator point of view; again, our pretopological axioms state that 
operator C : ^(K) ~> ^3(^}(X)) (associating with each set B c X the system CB of 
all "points" x <z X such that BCx) fulfils the KURATOWSKI axioms C(Bt u B2) = 
= CB! u CB2, C0 = 0. But not only this: again, we may pass to the dual relation or 
operator 33, which again associates with each x <= X the system 33x of its proximity 
neighbourhoods, again we may introduce the associated notions si and J£, thus 
obtaining a fourfold approach to proximity spaces the detailed discussion of which is 
left to the reader. 

6. The ordered semi-group of pretopologies on set X, additional axioms. The 
pretopological 33, C, si, and J£ considered so far constitute four complete lattices. 
In more detail, the pretopological 33 and S£ even constitute closure systems on the 
sets of all arbitrary 33 and S£ respectively, the pretopological C a kernel system on the 
set of all arbitrary C, whereas the system of all pretopological si — also a complete 
lattice by inclusion! — is the intersection of the closure system of all continuous from 
below and the kernel system of all continuus from above (pseudo-topological) si. 
From the operator point of view, the complete lattice of all pretopological 33, i.e. of 
arbitrary mappings 33 : X -> $(X), may be simply described as the full direct 
(cartesian) power <P(X)X of the complete lattice $(X) of all filters on X. According to 
the fundamental properties of Galois correspondences, the transition mappings (the 
translations between our four languages) are not only bijective, but also anti-
isomorphic or isomorphic with respect to lattice orders (inclusions). In more detail, 
the comparison between pretopologies xt = (33t-, Ch sii9 S£) (i = 1, 2) is described 
by the equivalence 

33! c 332 <̂> Ct ID C2o six-^ si2o S£^ZD S£2\ 

one says, that zi is coarser than T2, TX >~ T2, T2 finer than T1? T2 -< rt. A proper 

pretopology is a pretopology T which is coarser than the usual discrete (pre)topology 

id = (93* c * •*** &*)> w h e r e 

33dx = [{*}, X], CdA = A, 

AE$5 (0 (else), 

for all x eX, A c X, © e $(X). 

Topologies are usually defined as proper pretopologies which are idempotent, 
CCAL = CA. More generally, we may establish a semi-group structure in the set of 
all pretopological (proper or not) C by the usual composition of operators, 

( C 2 - C t ) A = C 2 ( C ^ ) . 
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This non-commutative multiplication is not only monotone in both factors, but also 
distributive with respect to finite suprema (i.e. set-theoretic unions in the relational 
interpretation) in the lattice of all pretopological C: for all finite F, 

(U c.) c = u (c,c), c u c( = u (cc,) 
teT teT teT teT 

(the first distributive law even holds for quite arbitrary T). Thus, we obtain a semi-
lattice ordered semi-group. The discrete topology Cd is the unit of this semi-group, 
moreover — by definition — the unit of the restricted semi-lattice of proper preto-
pologies. 

What remains is to express this multiplication of pretopologies xt = (33h Ch s/h 

JSf f) (i = 1, 2) in the other three languages. We are going to do this for 33. Here we 
have two possibilities. First, we may consider the interior operators J = 2?_1 : 
: ty(X) -> ^3(X). By monotony of C, the first formula of (33 — C) is equivalent with 
the usual interior formula 

]A= 33-M = X - C(X -A). 

Now in the product pretopology T = (33, C, jtf, S£) of factors xh where C = C2 • Cl9 

the interior operator J = 33_1 is nothing but the application of interior operators 
J2 = S J 1 after Jx = 3 3 ^ , 

\A = J 2 ( J^ ) or %~lA = 332
 X(^~X

XA) . 

The other description of product neighbourhoods makes use of a double exten­
sion procedure for neighbourhoods of a quite arbitrary pretopology T. This extension 
procedure follows precisely the two composition laws in the lattice <P(X) as described 
above. First, operator 33 : X -> <P(X) is extended from points, i.e. essentially principal 
ultrafilters, to sets, i.e. arbitrary principal filters, by the — more or less classical — 
definition 

2L4 = f| $ * 
xeA 

(note that principal filter \A, Xj is the intersection of principal ultrafilters [{*}, Xj 
of elements x e A). In a second step, this operator 33 : ty(X) -> @(X) is extended to 
completely arbitrary filters © by the definition 

2?23 = U 23̂4 = U f l »^ • 
Ae$5 Ae$5 xeA 

So at last, we have a monotone operator 33 : <P(X) -> <P(X) which assigns to 
each filter 23 (principal or not) its neighbourhood filter 3323 : B is a neighbourhood 
of filter 23 iff it is a neighbourhood of 23-almost all points x eX. (This is essentially 
the 23-filtered sum of all neighbourhood filters 33x, x e X, as introduced by GRIMEISEN 

[9] and applied frequently in modern model theory; another description of 33© may 
be given by means of the algebraic apparatus constructed by KOWALSKY [15].) 
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It is now easy to see that the product neighbourhoods 33 of factors 2315 332 can 
be described by the composition law 

2*23 = 2?1(23223), 

for any filter 23, in particular for any point x; so we may define 25x • 232 := 23. 
Remember that C = C2 • Cl; so the transition from C to 23 is not only an anti-
isomorphism of lattices, but also of semi-groups. The idempotency of proper pretopo-
logy, C2 c C, can now be expressed by 232 3 23: this is the last of Hausdorff's 
classical neighbourhood axioms. 

The translation of multiplication of pretopologies into the languages si and JS? 
can be taken from the work of GRIMEISEN. 
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