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ON A CONVERGENCE PROPERTY OF SET ALGEBRAS 

P. KRATOCHVlL 

Praha 

Let X be a nomenpty set, 2X the algebra of all subsets of the set X and X the 
convergence closure operator on 2X. We recall its definition. For each 9M c 2X

9 

A9M = {A;Ae2x and there is a sequence of sets An e 9W such that 

4 = iim4. = u n 4, = n u An}. 
n-*ao k-1 n=k k—1 n=k 

A power of X is defined by the transfinite induction: A°2R = 2R, AaS0l = U X(Xfi<m) 
for an ordinal a * 0 and 9M c 2X. fi<a 

Let a set algebra 21, 21 c 2*, be given. It has been noticed (see [2]) that Aa2l 
is also a set algebra for an arbitrary ordinal a and X^^H (wx = the first uncountable 
ordinal) is equal to the (7-algebra generated by 21. An easy completion of the well-
known statement (see [1], Chap. 1, Exercise 13) claims: 

(1) The image P ^ ^ l ] = {PA; A e Xm%} is a closed subset of the real line for 
each probability measure P. 

J. Novak has raised the problem to find the least ordinal a such that P[Aa2l] 
is always closed. The answer is given by 

Theorem. The number a = 2 is the least ordinal such that P[A*2l] is closed. 

Proof. 1) P[A22l] is closed. Let a real number a belong to the closure of P[A22l]. 
From (1) it follows that there is B e Xm$l such that PJ8 = a. The definition of the 
outer measure implies the existence of sets Bnie 21, n = 1, 2 , . . . , i = 1, 2 , . . . , such 

00 00 

that a g P ( U B I , ) g f l + 1/n and B <= U BBle A9t for each n = 1,2, . . . . Hence 
, = i 1=1 

a = P ( 0 UB»i)6P[A22l]. 
I f—1 i = l 

2) The image P[A2l] need not be closed as the following example shows. 

Let R denote the real line, 91 the algebra generated by semiclosed intervals of the 
form <a, 6), a, beR. 
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Lemma. If Ane % n = 1, 2 , . . . , A = lim An9 then there is a set Y9 0 4= Ye 9? 
such that Yc: AorYnA^Q. 

oo 

Proof. We denote Bt - R + At + Ai+l9 Ct = f] Bn9 i = 1, 2, ..., where 
n = i 

+ denotes the symmetric difference. Evidently Bt e 91 and 

(2) U Cn = R . 
H = l 

Now two cases are possible: 
1) There is a natural number n0 such that Cno = i?. ThenjBno = Bno+1 = ... = _R 

and 4̂„0 = Ano+1 = ... = .4. At least one of the sets Y = Ano or 7 = /? - y4no 

possesses the declared property. 

2) All the sets Cn + R. Then there is J5fc 4= U. We choose a compact non-
degenerate interval Tx c= R — Bk. Suppose that compact non-degenerate intervals 
7\ •=> T2 z> ... r> Tn have been constructed in such a way that Tt n Ct = 0, i = 
= 1, 2 , . . . , n. Denote Tn* = T„ - {r}, where r is the right end point of Tn. Now two 
cases are possible: 

a) T* cr Cn+1. Then A.M+1 n T„* = ,4n + 2 n T* = ... = .4 n T„* (otherwise 
there would be k > n and a point xe(Ak + Ak+1) n T* c (R - J?*) n Cn + 1 = 0). 
Hence the set Y from the Lemma can be found by using a nonempty measurable 
subset of T* nA or Tw* - A. 

b) T„* £ Cn+1. Then there is a point x e T*9 x £ Cn+U i.e. there is j ^ n + 1 
such that x £ By. We pick out a non-degenerate compact interval Tn+1 <=• T* — Bj. 

In the case a) we have the set Y as desired in the Lemma. If the case a) does not 
occur, then we have a non-increasing sequence of non-degenerate compact intervals Tn. 

00 

The intersection of it is disjoint with \J Cn and nonempty. We get a contradiction 
with (2). n==1 

Example. Let Q = {ql9 ql9...} be the set of all rational numbers, sn = qn + 
+ y/2, S = {sl9 s29...}. A probability P on A29t is defined by the relations 
P({qn}) = 2 /3 2 w - \ P({sn}) =-= 2/32w, P(U - Q - S) = 0. It is easy to see that sets 
AneM can be chosen in such a way that qteAn and st^An for i = 1,2, . . . , n. 

Then (3/4) (1 - 1/9") = .£ Vqt ^ l?An £ 1 - £ Ps, = 3/4 + 1/(4. 9") and hence 
i = l i = l 

lim PAn = 3/4. Now, let A be any set of A29t such that PA = 3/4. Then the uni-
n-*ca oo oo 

queness of the ternary expansion 3/4 = £ 2/321"1 = £ P^. = P(Q) implies Q c A 
i = l 1=1 

and A n S = 0. Then .4 £ ASH as follows from the Lemma and from the fact that Q 
and S are dense subsets of/?. It follows that 3/4 is a point of the closure of the P-image 
of 91 but there is no element A e A91 such that PA = 3/4. 
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Remark. Part 1) of the proof of the Theorem can be proved without using an 
outer measure. The outer measure can be replaced by Marczewski's characteristic 
function of a sequence of sets (see [3]). Problems and importance of elimination of 
the notion of an outer measure from measure theory are treated in [2]. 
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