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A CONTRIBUTION TO THE THEORY 
OF MODULAR SPACES 

J. MUSIELAK and A. WASZAK 

Poznari 

1. In this paper we introduce and investigate some modular spaces and connec­
tions between these spaces. In the first part the definition of a modular and a pseudo-
modular and of a modular space are given. Next, some examples of modular spaces 
depending on a parameter are given. In the second part of this paper a property 
of these spaces and connections between them are considered. 

1.1. Let a real linear space X be given and let Q be a functional defined on X 
with values — oo < Q(X) ^ +OO. This functional will be called a pseudomodular, 
if it satisfies the following conditions: 

e(o) = o, 
Q(-X) = Q(X)9 

Q(OLX + fiy) ^ Q(X) + Q(y) for every a, jS = 0, a + /? = 1. 

If Q satisfies the condition 

Q(X) = 0 if and only if x = 0 

instead of condition one, then Q is called a modular. It is easily seen that if Q is 
a pseudomodular on X, then we have always Q(X) *Z 0. Now, we define the modular 
space 

XQ = {x : Q(XX) -* 0 as k -+ 0, x e X] . 

It is quite obvious that defining modulars in different manners, we obtain various 
modular spaces (see [2]). 

1.2. Let X be a real linear space, and let 3 be an abstract set. Let X be a <r-
algebra of subsets of the set 3 , and let m be a nonnegative measure on X. We consider 
an extended real-valued function Q defined on 3 x X9 satisfying the following 
conditions: 

1. Q(& X) is a pseudomodular in X for almost every £ e 39 

2. if Q(€, X) = 0 for almost every f e 39 then x = 0, 
3. g(& x) is measurable in 3 for every xeX. 
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By means of this function Q we define the following functionals in X: 

eW=f^TwтЧdm' 

where p(£) is measurable, 0 < p(£) < oo, jsp(£) dm = 1, 

Q0(X) = supess Q(£9 X) , QU(X) = sup Q(£9 X) . 
i i 

Moreover, let 9M = { m j , r\ e $ , be a family of nonnegative measures on X9 where $) 
is a set of indices. Then we define 

M ) W = SUP <?(& *) dm* • 
• Js 

In particular, if m, are absolutely continuous with respect to m, then 

e*m(x) = SUP a(& v) <?(& * ) d m » 

where the kernel a(£9 rj) 5: 0 is measurable in £ for every q e ?). Two special cases 
will be of importance. In the first one with a(£9 rj) = 1 we shall write QS in place 

Of <?*(Vt)» i e > 

I d m . X*) = e(& x)' 
J -

The second one is obtained taking S = <0, oo), 9) = <^*, oo), where 17* > 0, m is the 
Lebesgue measure in S9 and 

_ | l / i ; for f g ? / , 
for f > »/. « . , ) - $ 

Then we shall write Q9 in place of e<-(gR), i-e-> 

1 r * 
ff#(x) = sup - Q(^9 X) d£ . 

n*n* n J n* 
It is easily verified that Q9 Q09 QS and Qff are modulars in X. If g(£, x) is a pseudo-

modular in X for every J e S , then gtt is also a modular, and Qai$i) is in general a 
pseudomodular in X. The respective modular spaces will be denoted by XQ9 XQo, XQa> 
XQff9 XQu, and XQtr(m- Let us remark, that taking S to be the set of positive integers, 
X the <r-algebra of all subsets of the set S9 and mB the number of elements of the 
set B c 3 , />(<!;) = (£)*, then Z c and Ztf0 = XQu are countably modulared space and uni­
formly countably modulared space, respectively (see [1]). Taking also 9) to be the set 
of positive integers and defining m„, n e $ , by means of a matrix A = (arti), ani ._ 0, 
i.e., mn(i) = a„f, we obtain the space X defined in [3]. 
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2. In this section we shall investigate some properties and connections between 
the above introduced spaces without any further assumptions on X. It is easily 
observed that 

2.1. We have XQu c XQ0 c XQ. 

2.2. J/ m3 < oo, then XQo c: XQa. 

This follows from the inequality QS(X) ^ m3. Q0(X). 

2.3. If 3 consists of a countable number of pairwise disjoint atoms Ai9 Al9... 
with respect to the measure m, and inf mAk > 0, then XQa c XQu. 

This is obtained from the inequality QS(X) ^ inf mAk . Q0(X). 
ft 

2.4. XQa cz XQ. 

To prove this inclusion, let us write An =- {£ : p(£) > n}. Then mAn -* 0 as 
n -> oo. Let us choose an e > 0. Then there exists an integer n such that jAn p(£) dm < 
< ie, and so 

e(x) < ie + p(£). Q(£9 X) dm £ Je + n . QS(X) . 
JS\An 

Let x e XQM9 then Qs(Xx) -> 0 as A -» 0, and so there exists a Ae > 0 such that ea(Ax) < 
< e/(2n) for 0 < A < Ae. Hence g(Ax) < e for 0 < X < Xe9 and thus x e XQ. 

2.5. 4̂n element xeX belongs to XQ9 if and only if9 Q(£9 XX) -> 0 as X -> 0 
almost everywhere in 3. 

Proof. Let Xk 10 and let us denote 

l + e(£, A^) 

Now, let e(& Ax) -> 0 as X -> 0 almost everywhere in 2 . Then &*(<!;) g p(£). 
• e (6 ^ ) -> 0 as fc -> oo and hk(£) ̂  p(<J). Hence, by Lebesgue dominated con­
vergence theorem, j 3 hk(£) dm -> 0, i.e., o(Xkx) -> 0. Thus xeXQ. 

Conversely, let x e XQ9 then j s hk(£) dm -> 0 and so hk(£) -> 0 in measure m. 
By the well-known Riesz theorem, hkt(£) -> 0 almost everywhere in 39 where {fc,} 
is a subsequence of indices. Hence Q(£9 Xkix) -> 0 as i -> oo almost everywhere in S. 
Since Q(£9 XX) is a nondecreasing function of X > 0, it follows g(£, Ax) -> 0 as X -> 0 
almost everywhere in 3. 

From 2.5 it follows immediately that 

2.6. If Q(£9 XX) -> 0 as X -> 0 in measure m, f/iew x e Jff. 
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The converse statement is true under an additional assumption, namely 

2.7. / / the measure m is absolutely continuous with respect to the measure 
nA> = $A p(€) dm, A e X, and x e XQ, then Q(£, XX) -> 0 as X -> 0 in measure m. 

Proof. Since x e XQ, by 2.5 we get Q(£, XX) -> 0 as X -> 0 almost everywhere with 
respect to measure m. But the measure n is absolutely continuous with respect to m, 
and so Q(£9 XX) -> 0 as X -> 0 almost everywhere with respect to measure n. Since 
the measure n is finite, this implies convergence g(£, Xx) -+ 0 as X -> 0 in measure n. 
Since m is absolutely continuous with respect to n, this implies Q(£, XX) -> 0 as X -> 0 
in measure m. 

Let us remark that the assumption of absolute continuity of m with respect 
to n in 2.7 cannot be omitted in general. For example, taking 3 as the set of positive 
integers, mB as the number of elements of the set B a 3, and p(£) = (•£)*, the condi­
tion Q(%, XX) -> 0 as X -> 0 in measure m is equivalent to the condition xeXQo, 
and not to the condition x e XQ. 

Now, we proceed to investigation of the space XD , * it is convenient to assume 

absolute continuity of the measures mn with respect to m, i.e., the modular Qayxfa) 

is defined by means of a kernel a(£, rj) 2> 0 (see 1). 

2.8. Suppose that a sequence of sets Ak e X, k -= 1, 2 , . . . , a sequence of indices 
00 

{rik} and a sequence of numbers {Mk} are given such that \J Ak = 3 and a(£, f/fc) > 
*=i 

> Mkfor every £ e Ak. Then XQ<fm c= XQ. 

Proof. Let xeXQo{m), then j s a(& rj). Q(£, XX) dm -> 0 as X -> 0 uniformly 

in 3). Taking Xt j 0 and choosing an e > 0 we have 

Mk Q(Ç, Xtx) àmй\ a(Ç, rfk) . Q(Ç, Xtx) d 
Jлк Jлк 

m < e 

for any k and for i sufficiently large. Hence Q(£, Xtx) -> 0 in measure in the set Ak. 
Since g(f „ Xx) is a nondecreasing function of X > 0, the well-known Riesz theorem 
implies Q(£, Xtx) -> 0 as i -> oo almost everywhere in Ak. Thus g(& Ax) -> 0 as X -> 0 
almost everywhere in 39 and so according to 2.5, x e XQ. 

2.9. / / sup Js a(£, i/) dm < oo, then XQo c X ^ ^ . 
i 

This result follows from the inequality 

Q*WÁX) -- SUP í a& ' ) d m ' e°(x) 
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2.10. J/ sup supess a(f, rj) < oo, then XQs c X . 

This follows from the inequality 

0ff(3K)(x) = s u p s u P e s s a& n) - Qs{x) • 

Remark. Let us note that the results obtained in this paper are generalizations 
of some results of [3], taking the set of natural numbers as S, the <7-algebra of all 
subsets of S as X, the measure mB defined as the number of elements of the set 
BczS, and p(£) = (i)*. 
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