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ON DESCRIPTIVE CLASSIFICATION 
OF FUNCTIONS 

M. KATETOV 

Praha 

In this note, an extension of the classic descriptive theory of sets and functions 
is developed which makes possible, in principle, a classification of all discontinuous 
functions on any topological space admitting of a one-to-one continuous mapping 
onto a separable metrizable space. The basic device are filters on countably infinite 
sets and their types. It turns out e.g. that every Baire class is generated by a certain 
filter which is described explicitly. It is also possible to define explicitly a filter gener­
ating a class containing all Baire functions. Assuming the continuum hypothesis, 
it can be shown that the class of all Baire functions is generated e.g. by the intersection 
of two uUrafilters. Various other theorems concerning filters, their types and filter-
generated classes are included, though some of them are not directly connected 
with problems of the descriptive classification. 

No proofs are given. Some of the results, and also their proofs, are contained 
in the author's paper "On descriptive classes of functions" (referred to as DFC here), 
which is to appear in "Abhandlungen aus Mengenlehre und Topologie, dem Anden-
ken Felix Hausdorffs gewidmet", Greifswald. 

1. Preliminaries 

1.1. We use the standard terminology and notation with slight modifications. 
The ordered pair x, y is denoted by <x, y}. Symbols like {xa | a e A}, {x \f(x) < 0}, 
etc. denote either a set or a family (an indexed set); the meaning will always be clear 
from the context. If M is a set, we put exp M -= {X | X c= M}. 

"Space" will mean a topological space. As a rule, the same symbol will stand 
for a space and its underlying set. 

1.2. Let a set A be given. Then, for any M cz exp A, M* denotes the collection 
of the sets X cz A intersecting all MeJt. 

1.3. If Tis a set or a space, then F(T) denotes the set of all real-valued functions 
on T, and 2 r denotes the set of all families {ut 11 e T) with ut = 0 ,1 . As a rule, F(f) 
and 2T are considered as spaces with the topology of Cartesian product. The set 
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of all continuous feF(T) is denoted by C(T). The canonical mapping of exp T 
onto 2T is denoted by XT\ if ^ C exp T, we usualy write x^ instead of XT{^)-

Remark. As usual, we consider functions on distinct spaces as distinct; thus, 
F(TX) n F(T2) = 0 whenever Tl9 T2 are distinct spaces (possibly with the same 
underlying set). 

1.4. A non-void collection 3F c. exp A is called a quasi-filter on A if (1) A is 
countably infinite, (2)Xe &9 Ye 3F9 X n Yc Z cr A implies Z e ^ , (3) 0 n o n e & . 
If, in addition, (]&? = 0, then ^ is called & filter. Thus, we consider filters on count-
ably infinite sets only. 

1.5. Convention. Whenever a definition refers to filters, it is tacitly assumed 
that it is also valid for quasi-filters. 

Letters 3?, <S9 <%9 ir
9 possibly with subscripts, will denote filters. The FrSchet 

filter on N, consisting of all X c N with N — X finite, will be denoted by Jf. 

1.6. If & is a filter on A, and B e &*9 then the collection of all F n B9 F e &9 

is a filter on B9 which will be called the trace of 3F on B. 

1.7. If {Xa | a e 4̂} is a family of sets, we denote by Yfoa \ <* e A} the set of all 
<a, x> where a e A, x e Xa. Let 3F be a filter on .4; for every a e A9 let ^ a be a filter 
on a set £„. Then the collection of all £{Ga | a e F} u £{fffl | a e A - F}, where Fe 3F9 

Ga e <Sa9 Ha c Ba9 is a filter on £{Bfl | a e A}. It will be denoted by ^-£{Sfa \aeA}. 

1.8. Let 3F and 0 be filters on A and B9 respectively. Put <Sa — <S for every a e A. 
The filter ^-£{0 a} is denoted by 3F . 0 and called the product of filters /F and <S. 
The filter ^ . & is denoted by ^ 2 . 

1.9. Let -̂ * and <S be filters on v4 and B9 respectively. Let q> be a single-valued 
relation with the domain .4, ranging in B and such that <P_1(G) e 3F whenever Ge<S. 
The triple <<p, ^", ^> is called a morphism from -_F to <S. If <<p-1, 0, #*> is also 
a morphism, then <̂ >, 3F, <S} is called an isomorphism. 

Convention. The terminology and notation used for mappings will be also 
applied to morphisms of filters. 

1.10. If there exists a morphism from !F to <S9 we shall write 3F 2> ̂ . Clearly, 
^ is a transitive reflexive relation on the class of all quasi-filters. 

1.11. Proposition. In the class of all quasi-filters endowed with the quasiorder ^ , 
every countable non-void subset has a supremum and an infimum9 and every subset 
of cardinality £ exp K0 'is bounded. 
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1.12. Definition. If there exists an isomorphism from OF to <§* we shall write 
3F £ <§ and say that SF is isomorphic to <§. If 3F S> <§, <§ ;> ^ , we shall write $F K<3 
and say that ^ is equivalent to ^. Observe that "equivalent" has been used in [1] 
and in [2] in the sense of "isomorphic" as just defined. 

1.13. Proposition. Two equivalent ultrafilters are isomorphic. 

See e.g. [2], Proposition 1.15. - Observe that a filter equivalent to an ultrafilter 
need not be isomorphic to it. 

2. Some properties of filters 

2.1. If A is a set and P is a property of subsets of the space 2 r , then Jl c exp A 
will be said to possess the property %-P, if %Jt (see 1.3) has property P; the prefix 
MX"" will be often omitted. E.g., Jl cz exp A is called Souslin if yM is a Souslin 
(= analytic) subset of 2A. 

2.2. Proposition. A filter is Souslin if it has a base which is a Souslin collection. 

2.3. If A is a countably infinite set, then \iA denotes the "canonical" measure on 
2A. If Jl c exp A, then the ^-measure of x^t will be called the measure of Jt\ 
and similarly for other related concepts, in accordance with 2.1. — Cf. DCF, 4.3. 

2.4. Theorem. The interior measure of every filter is zero. No ultrafilter is 
measurable. The intersection of a non-measurable filter (on a set A) and an ultra-
filter (on the same set) is not measurable. — See DCF, 4.4. 

3. Types of filters. Filter-limits 

3.1. Definition. Two single-valued relations, typ and Typ, are chosen once for all. 
The domain of both typ and Typ is the class of all quasi-filters. The equality typ & = 
= typ <§ holds if and only if 3F is isomorphic to 0; Typ 3F = Typ <§ holds if and 
only if SF is equivalent to <§. We shall call typ 2F and Typ 3F the isomorphism type 
and the equivalence type of -^, respectively. We put typ 3F § typ <§, Typ $F ^ 
^ Typ <§ if and only if $F ̂  <§. If £, Y\ are equivalence types, then ^ > r\ means that 
£ |> r\ and £ 4= r\. 

Observe that isomorphism types of filters are called simply "types of filters" 
in [2]. It is to be noted that isomorphism types (called simply "types") of ultrafilters 
have been introduced by Z. Frolik [1]. 

3.2. Clearly, all those quasi-filters which are not filters are equivalent; their 
equivalence type will be denoted by et 0 or simply by 0. The equivalence type of Jf 
be denoted by et 1 or simply by 1. 
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3.3. It is easy to show that the cardinality of the set of isomorphism types, 
and also that of the set of equivalence types is exp exp X0. 

3.4. Theorem. A countable non-void set of isomorphism types of filters has 
a supremum and an infimum. A countable set of equivalence types of filters has 
a unique supremum and a unique infimum. — See 1.11. 

3.5. Theorem. If M is a set of cardinality ^ exp N0 consisting of isomorphism 
types (or equivalence types) of'filters, then M is bounded. — See 1.11. 

3.6. Let P be a Hausdorff space. If ^ is a quasi-filter on a set A and {xa | a e A} 
is a family of points of P, then the 3F-limit of {xa}9 denoted by ,^-lim {xa}9 is defined 
in the usual way: x = SF-lim {xa}9 if, for any neighborhood V of x9 there is a set 
FeS? such that xa e V whenever a e F. 

3.7. If P is a Hausdorff space and !F is a filter, then, for any S c P, the set 
of all points -Ŝ -lim {xa}9 xa e S, will be denoted by ^-Lim S. If P and S are fixed, 
we shall sometimes say that 3F generates the set ^-lim S (and also every point 
y e .F-Lim S). 

3.8. If T is a set, & is a filter on a set A9 and {fa | a e A} is a family of functions 
on T, then the upper and the /ower 3F-limit of {/„} are defined in the usual way. 
E.g., the value assumed by the upper «^-limit of {/„} at a point teTis equal to the 
g.l.b. of numbers £ such that {a | /a(f) < £} belongs to ^ ; values — oo and oo are 
admitted. The upper and the lower /^-limit of {/<-} will be denoted by <^-lim+ {/fl} 
and $F-X\m~ {fa} respectively. 

3.9. If T is a set or a space, #" is a filter (on a set .4) and Y cz F(T), then we 
denote by ;F-Lim+ 7 the set of all / e F(T) such that / = ^-lim+ {/fl} for some 
fa G Y. The symbol «Ŝ "-Lim"~ 7 is defined in an analogous way. 

3.10. Proposition. Let P be a Hausdorff space, S cz P. If 3F ^ <S9 then 
&-Um S zo ^-Lim S. If & « <$9 then J^-Lim S = ^-Lim S. 

3.11. If P is a Hausdorff space, S cz P9 and ^ is an equivalence type, by 3.10, 
we may put £-Lim S = 3F-Wm S, where Typ 3F = £. If P and S are fixed, we shall 
say that £ generates the set £-Lim S (and also every point y e £-Lim S). 

3.12. Theorem. / / P is a space admitting a one-to-one continuous mapping onto 
a separable metrizable space, then every fe F(T) is in some 3F-\lm C(T). 

3.13. Remarks. 1) & £ <§ does not imply i^-Lim+ C(T) ZD ^-Lim+ C(T). 
Example: 3?9 m are non-isomorphic ultrafilters o n N , » = ^ n * . 2 ) / « ^ does 
not imply ^-Lim+ C(f) = #-Lim+ C(f). 
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3.14. Problems. 1) Does there exist a Hausdorff space P such that 3F = # 
whenever ,^-Lim S •=> <§-Wm S for every S c PI 2) Does there exist a Hausdorff 
space P such that ^ « <$ whenever -F-Lim S = 0-Lim S for every S cz P? 

4. Filter-descriptive classes and types of functions 

4.1. We denote by P the class of all topological spaces. For any filter $F, we 
put CI (&) = U{^-Lim C(T) \Te^}9 Cl+ (&) - U{^"-Lim+ C(T) | Te ^ } , 
0~ (&) = U{«^-Lim~ C(T) | Te ST}. If <!; is an equivalence type, we may, by 3.11, 
put CI (<!;) = CI (&) where Typ & = <!;. However, it is not possible to define Cl+ (£) 
in an analogous way; see 3.13. 

We shall call CI (2F) the bilateral filter-descriptive class (descriptive class, 
for short) generated by & (or by Typ &)\ Cl+ (&) and CI" (-^) will be called the 
upper and the lower unilateral descriptive class (abbreviated: upper and lower 
descriptive class) generated by $F. 

Examples: C1(0) consists of all continuous functions on topological spaces; 
CI (1) = CI (Jf) consists of all functions of the first Baire class. 

4.2. Proposition. If & ^<89 then CI (&) r> CI (<$). If <F « #, then CI (&) = 
= Cl(^). - See 3.10. 

4.3. Theorem. If T is a space admitting a one-to-one continuous mapping onto 
a separable metrizable space, then every real-valued function on T is in some 
filter-descriptive class. — See 3.12. 

4.4. Proposition. For every n e N, let 2in be a bilateral filter-descriptive class 
of functions. Then Si = {f\fe2nfor every neN} is a bilateral filter-descriptive 
class; if 2ln = CI (^n), then Of is generated by an infimum of filters 3Fn (or: by the 
infimum of types Typ $Fn). — See 1.11. 

4.5. Proposition. For every neN , let Bn be a bilateral filter-descriptive class 
of functions. Then there exists a smallest bilateral filter-descriptive class containing 
all 3ln. If Bn = CI (^n), then this class is generated by a supremum of filters 
&n. - See 1.11. 

4.6. Proposition. Let M be a set of cardinality ^ exp X0. For every meM, 
let <€m be a bilateral filter-descriptive class. Then there exists a filter-descriptive 
class <€ such that €€m c <& for every me M. — See 1.11. 

4.7. Let T be a non-void compact metrizable space. Denote by <8f(T) the col­
lection of all countable Y c C(T) which are dense in C(T) endowed with the topology 
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of uniform convergence. If fe F(T), Ye W(T), put Yf = Y u (f) iff is continuous, 
Yf = Y if not. Denote by $(f, Y) the filter on Yf a subbase of which consists of all 
sets {g | g e 7 / ? f(*) ~ e < g(i>) < f(r) + s}, where £ e T, e > 0. It is easy to show 
that, for any Yu Y2 in <3f(T)9 &(f YJ is isomorphic to #( / , Y2). We put <f>(f) = 
= Typ $(f, y) where y e <3f(T); 0(f) will be called the descriptive type off 

4.8. Theorem. Let T be a non-void compact metrizable space. If 3F is a quasi-
filter, then a function fe F(T) belongs to CI (3F) if and only if Typ #~ _• 0(f). 

In other words, the descriptive type of a function feF(T) is the infimum (in 
fact, the "minimum") of equivalence types of filters generating f. 

4.9. Problems . 1) Does Cl+ {&) = Cl+ (#) imply #* « # (or even & £ #)? 
2) Does CI {&) = CI (#) imply JF « m 3) Does CI (<T) z> CI (ST) imply #" ^ ^? 
4) Is there a compact metrizable T, a function fe F(T) and an ultrafilter % such that 
0(f) ^ Typ ^ ? 5) If T is a topological space, does there always exist an infimum 
of all equivalence types of filters generating f? If such an infimum exists, does it 
generate the function f? 

5. Special filters and transforms of filters 

5.1. Definition. We put Jf° = {X | X cz N, OeX} , D(0) = N, Jfl = ^T, 
D(1) = N. Let a > 1 be a countable ordinal and suppose that the filters Jf^ on D(5) 

have been defined for all { < a. If a = fi + 1, we put yVa - , /T. Jf\ D(a) = N x 
x D(/?). If a is a limit ordinal, we put Jf* = 0 ( a ) - £ { ^ | 0 < f < a} where 0(a) 
denotes the filter on {£ | 0 < £ < a} with a base consisting of all sets {<.; | /? < ^ < a}, 
j3 < a. Then ^ a is a filter on the set D(a) = £{D ( I ) | 0 < ^ < a}. - See DCF, 2.7. 

5.2. The equivalence type of Jra will be denoted by et a or simply by a. 

5.3. Proposition. If a, /? are countable ordinals, then Jf*. */T^ is isomorphic 
to jrP+a, - See DCF, 2.8. 

5.4. Definition. If A is a set, then eA will denote the collection of all finite subsets 
of A. If 3F is a filter on A, consider the collection of sets {x j x e eA, x cz F] where 
F e 3F, and {x | x e eA, x n H =t= 0} where H e #"* (see 1.2). Clearly, this collection 
is a subbase of a filter on eA, which will be denoted by e j ^ and called the e-transform 
of W. 

5.5. Proposition. For any filter J% e#" ;> 2F. 

5.6. Proposition. If % is an ultrafilter, then e^f « %. 

In more detail: ^ is isomorphic to the trace of e ^ on the set {(x) \xe A] c eA. 
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5.7. Proposition. JT ^ %JT ^ JT2. 

5.8. If A is a set, then wA will denote the set of all finite sequences of elements 
of A. If a e w.4, j8 e w.4, then a . /? denotes the "concatenation" of a and /? (i.e., if 
a == {a0,..., am}, 0 = {&<,,..., &„}, then a . j8 = {a0,..., aw, fc0,..., &„}). 

5.9. Definition. A set V c w_4 will be called sequentially finite, if, for any a e AN, 
there are only finitely many such segments of a which are also segments of some fieV. 

5.10. Lemma. If A is countable non-void, then the collection of complements 
of sequentially finite sets is a filter on w_4. 

5.11. Let $F be a filter on A. For any <p e &wA
9 we denote by G(<p) the set of all 

a e v/A possessing the following property: if a = /?. {c} . <5, then c e ^(/?). It is easy 
to show that, for any (pt e &r™A

9 G(<pt) n G(<p2) = G(q>) where <p e JFWit
> <p(a) = 

= <?i(a) n <p2(<*) fof every a e wA9 and that no G(<p) is sequentially finite. 
We denote by w ^ the collection of all H cz wA such that H => G(q>) — F for 

some q> E 3F^A and some sequentially finite V. It is easily seen that w ^ , called the 
w-transform of 3F9 is a filter on w.4. 

5.12. Proposition. For any filter &9 (w^)2 ^ w^* ^ &. 

5.13. Theorem. For any filter &9 both & . w.^ anrf (w^*) . ^ are isomorphic 
to w ^ . 

5.14. Theorem. For any filter &9 the class CI (w^") is closed under ^-limits 
(hence also under ^-limits, i.e. the usual limits of sequences). 

5.15. Let T be a space. A set S c Twill be called a Souslin set (in T) if it can 
be obtained by the Souslin operation from a family {Xa \ a e wN} where .Xa are zero-
sets in T, i.e. sets of the form {t \ te T9 f(t) = 0}, fe C(f). A function feF(T) 
will be called Souslin (co-Souslin) if all sets {t \ t e T9 f(t) > c } , c a real number, are 
Souslin (co-Souslin). 

5.16. Theorem. The class CI (wj^) contains all Souslin and all co-Souslin 
functions. 

5.17. Remark. It can be shown that z ( w ^ ) c 2wN belongs to the projective 
class PC A (for the definition of this class see e.g. [3]). 

5.18. Problems. 1) Does there exists an equivalence type v such that 1 < v < 2? 
In a more general way, do there exist, for countable ordinals £, equivalence types v{ 
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with £ < v5 < £ + 1? 2) Is there a filter 0 with 0 « 02? Does (wi~)2 « wJ" hold 
for some 3F1 For 3F = «yT? For all ^ ? 3) The same questions with s instead of « . 
4) Is w-yf" measurable (see 2.3)? 

6. Unilateral and bilateral descriptive classes 

6.1. Theorem. Let T be a set. Let D a F(T) possess the following property: 
tffi e -0, f2 e D9 e > 0, then there is a function g e D such that \g(t) - max (ft(t), 
fi(t)\ <*for all te T. Then9 for any filter &9 J~-Lim+ D c e^-Lim D, #VLim~ D c 
c: e^-Lim Z). 

6.2. Theorem. Let T be a topological space. Then9 for any filter <F9 we have 
Cl+ (3F) c CI (e^) , Ci" (J~) c CI (e^) . T/IMS, every unilateral filter-descriptive 
class is contained in a bilateral filter-descriptive class. 

7. Baire functions and filter-descriptive classes 

7.1. Theorem. For every countable ordinal a, the filter-descriptive class CI (et a) 
consists of all functions (on topological spaces) of Baire class a. — See DCF, 2.17. 

7.2. Theorem. Under the continuum hypothesis, there exist ultrafilters °U9 if 
on N such that °U n f generates the class of all Baire functions on topological 
spaces. — See DCF, 5.6. 

7.3. Theorem. Under the continuum hypothesis, there exists an ultrafilter °U 
(on wN) such that % n wjf generates the class of all Baire functions on topological 
spaces. 

Added in proof. The author wishes to point out that filtered sums of filters 
(see 1.7) and products of filters (see 1.8) have been introduced by G. Grimeisen [4]. 
A part of Theorem 7.1 is due, in a different setting, to G. Grimeisen [5]. 
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