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T -COMPLETIONS OF CONVERGENCE VECTOR SPACES 

Bernd Muller 

Mannheim 

I. Introduction 

The aim of this paper is to construct, for a T,-convergence vector 

space E (abbreviated by T,-cvs), a T,-completion E with the following 

properties: E is a complete T,-cvs, possesses the usual universal pro­

perty within the category of T,-cvs and contains a subspace isomorphic 

to E. First we give an example of a T,-cvs P for which there exists no 

complete convergence vector space containing F as a subspace. If we 

consider a completion C(F) of P in the category of uniform convergence 

spaces or Cauchy spaces which contains F as a subspace (see e.g. [9], 

[lo]), this example shows that C(F) cannot be a convergence vector 

space. Therefore we characterize those T,-cvs E which possess a T,-
A 

completion E. For example, every subspace E of a complete T,-cvs M 

possesses a T,-completion E but, in general, E is not isomorphic to a 

subspace of M, even if E is dense in M (see example III.3). Other 

examples of T,-cvs possessing a T,-completion are locally precompact 

T,-cvs (see [8]). In this case, the T,-completion is a locally compact 

T,-cvs. Finally, it is mentioned without proof, that for certain vec­

tor sublattices A of C (X), the algebra of all continuous real valued 

functions on the convergence space X, endowed with the continuous con­

vergence structure (see [1]), the T,-completion is isomorphic to the 

inductive limit of the family { an(A) : n 6 IN } , taken in the cate­

gory of all convergence spaces. 

A convergence space will be always a convergence space in the sense 

of H.R.Fischer (see [1]). An IR-vector space E endowed with a conver­

gence structure X is called a convergence vector space (cvs) iff the 



299 

algebraic operations are continuous. This can be described internally: 

A convergence structure X on an IR-vector space E is a convergence vec­

tor space structure iff V x e E the family Xx of all filters conver­

ging to x has the following properties: 

i. $ + y e Xo v $,v e Xo 

2. ad> e Xo V a e IR , V $ e Xo 

3 . V$ e Xo V 0 e Xo, where W i s t he neighborhood f i l t e r of o i n 1R 

4 . \vx e Xo v x e E 

5 . Xx = x + Xo V x e E 

For a subset U of a cvs E we define the adherence a(U) to be the set 

{ y : y e E, 3 a filter <£> converging to y with U e <f> } and 

an+1(U):= a(an(U)) V n e IN. U is called dense in E if a(U)=E, and 

closed if a(U)=U. The closure of U is the smallest closed subset of E 

containing U. A cvs E is called regular if for all x e E and for all 

filters $ converging to x, the filter a($) generated by { a(U): Ue$} 

also converges to x. A T^-cvs is a separated regular cvs. Vie denote 

by L(E,F) the set of all continuous linear mappings of a cvs E into 

a cvs F. A mapping T e L(E,F) is called an isomorphism from E into 

-1 F if T is injective and T : T(E) -* E is continuous. The cvs E and 

F are called isomorphic if there exists an isomorphism from E onto F. 

All cvs considered in this paper are vector spaces over IR. 

II. Construction of a T.,-completion 

Let us begin with, the usual definition of a Cauchy filter. 

Definition II.1: A filtev 0 in a cvs E is called a Cauchy filtev if 

0 - 0 convevges to o in E. A Cauchy filtev 0 in E is called bounded 

if \V0 convevges to o in E wheve \V is the neighbovhood filtev of o in 

IR. A cvs E is called complete if evevy Cauchy filtev in E convevges. 

Since every Cauchy filter of a complete cvs F is bounded, it is a 
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necessary condition for a cvs E to be a subspace of a complete cvs 

that every Cauchy filter is bounded. We now give an example of a T-,-

cvs E for which not every Cauchy filter is bounded. 

Example 11.2: Consider E := © R. with R. = IR V i € (N, where the 
i€<N x x 

direct sum is taken in the category of all cvs. V m,n 6 IN define 

Fm,n ••-' { (xj>j€N : (xj}jeN £ E> ^-...-x^o, I x . I ^ V j E W } 

Let F be the filter generated by { F : m,n € IN } , and let X be 

the convergence structure on E defined in the following way: 

A filter $ converges to x in (E,X) «=«• x - $ - F converges to o in E. 

It is not hard to see that (E,X) is a T_.-cvs for which every bounded 

Cauchy filter converges. But the sequence (xr.)r.nN * defined by 

^ if 0 < r 
x = (x O-tcftj with x . := < J , is an unbounded 
r r>° JtlN r'J o if j > r 

L 
Cauchy sequence in (E,X). 

Definition II. 3- -4 complete T^-cvs E £s called a T-,- completion of a 

T^-cvs E if the following holds: 
A A 

i. There exists an isomorphism i from E irctO E, suc/z i/zat E ts the 

closure of i(E). 

2. V complete T^-cus M and V T € L(E,M) 3 T e L(E,M) such that 

T = Toi , 

Remark: A T^-completion of a T-,-cvs E is uniquely determined if it 

exists, and for every separated topological vector space F, the usual 

topological separated completion of F is also the completion of F in 

the. category of all T^-cvs. 

Every subspace E of a complete T-,-cvs F has the following property: 

(*) A filter $ converges to o in E <=*-> V complete T^-cvs M and 

V T € L(E,M), the filter T(<£>) converges to o in M, 
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Since the property (*) is a necessary condition for E to have a T-,-

completion, we define: 

Definition II.4: A separated ovs E is called a-regular if it has pro­

perty (*) . 

Remark: Every a-regular cvs E is a T^-cvs and every Cauchy filter in 

an a-regular cvs is bounded. As example II.2 shows, there are T^-cvs 

being not a-regular. 

Let E be an a-regular cvs. We now show that E possesses a T.,--comple­

tion. For this purpose let C be the set of all Cauchy filters in E. 

On C we define a relation ~ by 

$-..,¥«.-•• the filter $ - ¥ converges to o in E, 

Since for all a,3 € R and for all <&,¥ G C the filter a* + $V is 

a Cauchy filter in E, the quotient E := C/ carries a vector space 

structure in a natural way. Define a linear mapping i : E -> E in 

the following way: i(x) := u(x) V x G E, where u : C -> C/ is the 

quotient mapping and x is the filter generated by {x}. Since E is a 

separated cvs, this mapping i is infective. We now want to construct 

a convergence vector space structure on E such that the mapping 

i : E -> E is continuous. For every subset U cz E let us denote by c 

Uc the set { u.(Y) : ¥ G C, U € H* } c E . Let H be a filter on E . 

We define: 

H converges to y(f) in E «=-=> 3 a filter 0 converging to o in E such 

the filter 0 generated by { U : U G 0 } is coarser than u(¥)-H. 

Due to this definition, E is a convergence vector space. Since E is 

a T-,-cvs, E is a separated cvs and the mapping i : E -> E is an j c c 

isomorphism from E into E . For every $ £ C , the filter i($)-y($) 

is finer than the filter ($-0) generated by { (F-F) : F e $ } , 
c c 

which implies that i($) converges to u($) in E . 
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Propsition II.5: For every a-regular ovs E the ovs E has the 

following properties: 

a. There exists an isomorphism i from E into E , suoh that i(E) is 

dense in E . 

b. For every Cauohy filter $ in E tne filter i($) OOnferaOs -£n E . 

O. If E is a separated topological veotor spaoe> E is the usual se­

parated topological completion of E . 

d. V complete T,-cus M and V T G L(E,M) 3 TQ G L(E ,M) suoh that 

T = T ° i . c 

Proof: We will only prove property d. Let M be a complete T-̂ -cvs and 

T G L(E,M). For every x € E we define T (x) to be the limit of 

the filter T($) in M, where $ is any Cauchy filter in E with x = u($). 

For all subsets U c E the subset U of E has the following proper­

ty: y € UQ «=-=> 3 $ e C with U G <S> and y = u($) . 

This implies T(U ) c a(T(U)) , and therefore T is continuous. 

Proposition II.6: For every a-regular ovs E there exists an a-regular 

ovs A(E) with the following properties: 

a. There exists an isomorphism i from E into A(E) , suoh that i(E) 

is dense in A(E). 

b. For every Cauohy filter $ in E the filter i($) converges in A(E) . 

o. If E is a separated topological vector space3 A(E) is the separated 

topological completion of E. 

d. For every complete T^-cvs M and for every T G L(E,M) there exists 

an operator A(T) G L(A(E),M) with T = A(T)oi . 

Proof: Let M be the category of all complete T^-cvs and |M| the class 

of all objects of M . Let E be the cvs constructed in proposition 

II.5 . For all M G I Ml and for all T G L(E ,M) let us denote by 

A^ T the coarsest convergence vector space structure on E for which 

T is continuous. Since X is coarser than the convergence struc-
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ture of E , there exists a coarsest convergence vector space structure 

X which is finer than XM T for all M e IMI and all T € L(Ec,M). 

Let us denote by A(E) the vector space E endowed with this conver­

gence structure X. Since for every o 4- x € A(E) there exists an 

M e 1MI and T € L(A(E),M) = i.(E ,M) with T(x) * o , it is easy to 

see that A(E) is a-regular. Let us now prove that the mapping 

i : E -> E is also an isomorphism from E into A(E). For this purpose 

let $ be a filter in E , such that i($) converges to o in A(E) . For 

every M € IMI and T € L(E,M) there exists a map TQ e L(E ,M) 

with T = T oi . Since TQ is also a continuous mapping from A(E) into 

M, the filter T (i($)) converges to o in M. From T = T oi it 

follows that T($) converges to o in M. Since E is a-regular, $ conver­

ges to o in E. The other properties, described in proposition II.6, 

follow from the corresponding properties of E in proposition II.5. 

Theorem II .7: A T^-avs E possesses a T-,-completion if and only if E 

is a-regular. 

Proof: Let E be an a-regular cvs. We define E. := E , En+i
 := A ( E

n ^ 

and we consider E as a subspace of E . for all n € IN. The inductive 

limit E of the family { E : n 6 IN } , taken in the category of all 
A 

cvs, is a separated and complete cvs. To show that E is a regular cvs, 
A A 

we consider a filter 0 converging to o in E. By definition of E, there 

exists an m € ftSf and a filter ¥ in E , converging to o in E , such 
A 

that the filter generated by Hf in E is coarser than $ . Take V E ¥ 
A 

and x € a(V) , the adherence of V built in E. There exists a filter 
A 

0 with V € 0 which converges to x in E. One can find an r € IN , 

r > m, such that x £ E , E r € 0 and 0 := { Un E : U € 0 } is a 

filter in E which converges to x in E . Since E is a subspace of E , 
r ° r m * r' 

the filter 0m := { Wn E m : W G 0 } is a Cauchy filter in E , and 

since every Cauchy filter of E converges in E
m + . i - x is an element of 

Em+1' T h e r e f o r e w e have a(V) = a m + 1(V), where
 a

 1(V) is the ad-



304 

herence of V taken in E m + 1- This implies that the filter a(<£>) genera­

ted by { a(V) : V e $ } has a basis in E . and converges to o in 
A 

E ... since E ,A is regular. Therefore E is a complete T7-cvs which m+l* m+1 J 

contains E as a subspace, because E is a subspace of E for all n e IN. 
A 

E is a dense subspace of E . V n e IN, which implies that E is the 

closure of E. Now let M be a complete T-,-cvs and T e L(E,M). We de­

fine T1:= T and T R + 1 := A(T ) V n e IN. If we put T(x) := T (x) 
A A 

if x lies in E , we get a continuous linear mapping T : E -* M with 

T(x) = T(x) V x e E. 

In the definition of a T^-completion, a very strong property was re­

quired, namely the existence of an isomorphism i from the cvs E into 
A 

its T^-completion E. If one is only interested in the existence of a 
A 

continuous linear mapping i : E -* E , one can show that every cvs E 

possesses a "T-,-completion". In the language of category theory, this 

can be formulated in the following way: 

Proposition II.8: There exists an epirefleotor V from the category X 

of all ovs into the oategory M of all oomplete T-^-ovs. 

Proof: Let us denote by I Ml the class of all objects of M and let E 

be a cvs. Let G be the vector space E , endowed with the coarsest con­

vergence vector space structure for which T : G -> M is continuous 

V M e IMI and V T e L(E,M). Since H := D { T"1(o):Me|M1,TeL(E,M)} 

is a closed subspace of G, the quotient F := G/„ is an a-regular 

cvs. We define V(E) to be the ^-completion of F. Let uE be the 

natural mapping from E into V(E). For every cvs F and T e L(E,F) let 

us define V(T) e L(V(E),V(F)) to be the uniquely determined mapping 

from V(E) into V(F) with V(T)°yE = yF°T . Now it is not hard to see 

that V is an epireflector from »£ into M . 
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III. Vector sublattices of C (X) 

In this section we will describe the T^-completion of a vector sub-

lattice of C (X), the algebra of all continuous real valued functions 

on a convergence space X endowed with the continuous convergence 

structure (see [1]). For any subset A of C (X) let us denote by c„X 

the set X carrying the coarsest convergence structure such that the 

mapping i : X - C (A) , defined by [i(x)](f) := f(x) V x € X and 

V f € A, is continuous. It is easy to see that A is not only a sub-

space of C (X), but also a subspace of C (c X). 

Proposition III.l: Let B be a veotor sublattioe of C (X), whiah se­

parates points in X and contains the constant functions. Then the cvs 

B and A(B), constructed in section II> are isomorphic to the adhe­

rence a(B) of Bj taken in C (cRX). 

This proposition implies the following result: 

Theorem III.2: Let X be a convergence space and let A be a vector sub-

lattice of C (X)^ which separates points in X and contains the con­

stant functions. Then A is also a subspace of C (c«X) and the induc­

tive limit A of the family { a (A) : n € IN } > taken in the category 

of all cvsy is the T-,-completion of k ^ where V n E IN the spaces 

an(A) are built in C^ic^). 

From Stone-Weierstraft theorems which can be found in [1] and [3] it 

follows: 

Corollary: Let k be a vector sublattioe of C (X) which separates 

points in X and contains the constant functions. Assume that X is a 

topological Lindelof space with X = c«X or that X carries the coar­

sest topologyj such that every f € A is continuous. Then C (X) is 

the T -completion of A. 
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Remark: There exists a topological space X and a vector sublattice A 

of C (X), such that an+1 (A) \ an(A) 4= 0 V n £ IN. This shows that in 

general an a-regular cvs is not dense in its T-.-completion. 

Now we will construct a topological space X and a dense vector sub-

lattice A of C (X) such that C (X) is not the T^-completion of A. 

Example III. 3: Let us denote by [o.w], resp. [o,ft], the set of all or­

dinals less than or equal to the first countable, resp, first uncoun­

table, endowed with the interval topology. In [o,fi] we define a se­

quence by x^ := 1 and x
n+^ :~ lim rx V n e IN . 

r-K» 

Define T± := {[o,ft] x [o,u>] \{(ft,co)}} x {1} and 

Tn := {[o,fl] x [o,fi] \ {(ft,̂ )}} x {n} V 1 < n C IN. In the topologi­

cal sum T := I T identify (x,oi,l) with (x.fi.2) V x€[o,-l] Mfi}, 
n€IN n 

(ft,y,2n) with (ft3y,2n+l) and (z.fi,2n+l) with (z,ft,2n+2) 

V y3z e [o,fi]
N{fl} and V n £ IN. Let Q be the quotient which arises 

from T by this identification, and let i|/ be the quotient mapping. On 

P := Qufal , where a £ Q, we define a topology in the following way: 

For every x € Q let U(x) be a basis of the neighborhood filter of 

x in P, where U(x) is the neighborhood filter of x in Q, and for 

a £ P\Q let { \J *(T )ufa} : n € (N } be a basis of the neighbor-

v>n 

hood filter of a. It is easy to see that P is a c-embedded topologi­

cal space (see [4]). Define ym-= *K (
x
m^

x
ln>

m) ) * z m
: = ^(^m^)) 

V m € IN and X := P \{ y : m G IN } . As a subspace of a c-embedded 

topological space, X is c-embedded. Now consider 

A := { f : f € C(X), f(z )=lim f (M (kx ,kx ,m+l) )) V m € IN } 
k-*» 

It is not hard to see that A is a point separating vector sublattice 
of C(X) , which contains the constant functions. For every subset U 

-A 
of X let us denote by U the closure of U in the coarsest topology 
on X for which all f £ A are continuous. Now for all p £ X and 

all filters 0 converging to p in X, the filter 0 generated by 
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{ U : U € 0 } converges to p in c.X. This implies that the sequence 

(z ) -^ convergies to a in c.X. The linear mapping r, : C Cc.X) -• IR, 

defined by r,(f) := I (hn f(zw) V f € C(c.X), is continuous. Since 
nm * n H 

A is a subspace of ^(C-A-O* the restriction 6 of r, to A is continuous. 

The set { z : m € IN } is not relatively compact in X, therefore 6 

has no continuous extension from A to C (X). Finally it is not hard 

to see that A is dense in C<,(c-A
x) and in Cc(X). 
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