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ON SPACES OF VECTOR-VALUED COKTINUOUS FUNCTICHS
J. SCHEMETS
LIEGE

Let X be a completely regular and Hausdorff svrce, cnd 2 be a
locally convex topological vector space.

Then we denote by €(X) the linear snoce of the continuous
functions on X and by CS(X) the space ¢(X) endowed with the topo-
logy of pointwise or simple convergence.

As far as E is concerned, we denote by P its eyster of seni-
norms and by P! a system of semi-norrms on I which 15 fiaer than P.

If R is a locally convex property which is cteile for Hous-
dorff inductive limits and which is satisfied by any linear space
when it is equipred with its finest locally convex toprlogy, then

Y. Komura [2] has introduced t'. R-space associated to I as the

linear space E endowed with the coarsest system of semi-norms P!
which {is finer than P and which) makes I setisfy property R. As
examples of such properties R let us mention the following ones :
the space E is ultrabornolegical, bornological, barrcled or eva-
luable.

Let us now recall the following results from [1].

Theorem 1.
a) The space CS(X) is always evaluable.

b) The barreled space associated to.Cs(X) is Cc(pX). In particu-
lar, CS(X) is barreled if and only if X is a p-space which ccmpact
subsets are finite.

c¢) The bornological space associated to CS(X) is CS(UX). In parti-

cular, CS(X) is bornological if and only if X is rcalcorpacte
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d) The ultrabornological space associated to C (X) i
particular, CS(X) is ultraboernological if

compact and such that

s CC(UX). In

S
cna only if X is real-

all its compact subsets :re finite,

In this theorem, CC(X) stands of course for #(X) endowed with
the compact-open toroloyy coming from X, and v for the reaslcompac-
tification of X. Moreover, calling bounding in X the subscts of X
where every f € e(X) is bounded, pX is the smallest _ublspace of

vX containing X and where every bounding subset is relatively

corpacte.

Definitions. Let us denote by €(X;E) the lincar space of the

continuous functions from X intc I and by CPI P(X;E) the space
yS

w(X;E) endowed with the semi-norms pA(p‘GF, ACX finitc) defined by

p}(e) = sup p'le(x)], vo € #(X) .
XEA

Then C (X E) is of course a locally convex

svace, whlch we write CS(X;E) if Pt = P,

topolo_ ical vector

We are interested in characterizing the spaces associated to
c (x;E).
o

pt In [4], we have alrezdy got the following resultse
,

Theorem 2.

a) The space (X E) is a Mackey space if and only if (E,P‘)
’
is a Nackey spaceu
b) The evaluable space associated to CPl S(X;E) is the scpuce
?
P' (X E) where P! is the system of semi-norms of the evaluable

space associated to (E,P'). In particular, C S(X;E) is evalua-

ble if and only if (E,P!) is evaluable.

¢c) The space Cpr (X;3) is berreled if and only if C_(X) and
o S

(E,P') are barreled. Moreover, if C (X) is barreled, then the

barreled space associated to C (X E) is C (X E) where P'

is the

(g,pP').

system of semi-norms of the barreled space associated to
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The bornolozical and ultrabornoleogical cecses seen hsrder to
study. In [4], we give sore results about the boriclericsl ¢:sze.
It is the purpose of this note tc show that an &nalogcous rethod
allows to get results sbout the ultravornological case. i more
extended vergion is under preparation [5].

The hint goes on as follows. If B is an absolutely convex
subset of E, then EB denotes the linear hull of B when it is

equipped with the gauge of B; moreover 3 is cclled a Ban=ch ZJisk

Iocey (resz.

if E_ is a Banach space. Then a sequence is lcc frst)

B
converzent in E to e if there is a bounded

A

2 (rest. & hourded
Banach disk) B of E such that the sequence converzes toc ¢ in 33.
Finally E is boraological (resp. ultraboraological) if ond only

if every absolutely convex subset of E which ebsorbs ithe lazley
(resp. fast) convergent sequences is a neighborhood cof C i» I.

The following result indicates then where to leool: fore

Theorem 3. If the spece CP,’S(X;E) is ultraboraclo ic-1
(resp. bornological), then the spaces C_(X) and (E,P') ore nitra-
bornological (resp. boraological).

The bornological result is theorem V.i.1 of [4]; *hc¢ rroof
of the ultrabornological cocse goes on anclogously Y- uce ¢l the
preceding remark.

The aim is then to get converse results to theores 3. This
can be done with the help of the following gencrelizetionrn cf a

result of Nachbin [3].

Theorem 4. If T is an sbsolutely convex subset of ¥{X3;I),
there is a smallest compact subset K(T) of BX such that
9 € Q(X;E) belongs to T if ; is equal to O on a neighborhocd of
K(T) in gX (5 represents the unique continuous extension cf ¢
from X into BE).

If moreover there are p € P and r > ¢ such thet

T fp € €(X32) 2 plo(x)] = x, vz o€ 7},

then K(T) is the smallest coroect subset of BX such that

o € €(X;E) belongs to T if ¢ vanishes on K(T), and one hrs Hhen
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T Y {p € ¢(X;E) p(x) € bp((r), vx € K(T)}.

Proposition 5. If T is an absolutely convex subset of K(X;E)

which absorbs the fast convergent sequences of CP' S(X;E), then
’
K(T) is a subset of uX,

Proof. Suppose there is an element x € BX\vX which belongs
to K(T). Then we know there are open subsets Gn of BX which are
increasing, constitute a cover of vX and do not contain x. By
theorem 4, there is then a sequence g ¢ €(X;E) such that

9y ¢ nD and an(Gn) = {0} for every n. One can prove then that

x
B=1{=

oo
c, ne, z |cnl < 1}
n n=1

1

is an absolutely convex compact subset,

hence a bounded Banach
disk of CPl

S(X;E). Of course the sequence ?, tends to O in
Q(X;E)B and cannot be absorbed by T, which is contradictory.

Proposition 6. If T is an absolutely convex subset of €(X3E)
which absorbs the Mackey (resp. fast) convergent sequences of
CP',S(X;E) [resps of CP’S(X;B)] end such that K(T) is contained
in X, and if X satisfies the first axiom of countability [resp.

and if (E,P) is metrizable], then an element ¢ belongs to T if ¢
vanishes on K(T).

Proof. Let us prove the "lackey" version. By proposition
VodeT of [4], we know that K(T) is finite. So there is a sequence
£, € ¢(X), with values in [0,1], equal to 1 on neighborhoods of
K(T) and to O outside decreasing neighborhoods in X of K(T), which

intersection is K(T). Let now ¢ € ¢(X;E) vanish on K(T). The abso-

2
lutely convex hull of the sequence n fn¢ is then a bounded disk

of CP' S(X;E) : therefore the sequence n fn¢ is absorbed by T.

’ ~
Moreover for every n, [(1—fn)¢] vanishes on a neighborhood in BX
of ¥(T), so (1~fn)¢ belongs to ¢T for every ¢ > O. Hence the con-

1
clusion since g equals 5 [{1-f )¢ + f 9] for every n.
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Let us now consider the "fast" version. Let ¢ vanish on K(T)
and (pn + n€N} be a countable system of semi-norms on E, equiva-
lent to P. Then there is a sequence fn € ¢(X), with values in
[0,1], equal to 1 on a neighborhood of K(T) and to O outside
6, = {x e X ple(x)] < n-4}. Then

B={2 c n"fgs I |c]|=1]
n=1 n=1

is & bounded Banach disk of GP s(X;E). But the sequence nfnq con-
9

verges to O in ?(X;E)B, so it is absorbed by T. Hence the conclu-

sion sinoce E(‘l'—tn)q]~ vanishes on a neighborhood in BX of K(T).

heore o

a) If cs(x) is bornological and (B,P) metrizable, then GB(X;E)
is bornological.

b) If cs(x) is ultrabornological and (E,P) a Fréchet space, then
cs(x;E) is ultrabornologicale.

Proof. a) is theorem V.4.11 of [ 4 ]. However one can proceed
similarly to b), which simplifies the proof.

b) Let T be an absolutely convex subset of €(X;E) which absorbs
the fast convefgent sequences of CB(X;E). Combining theorem 4 and
part 4) of theorem 1, we get that K(T) is a finite subset of X.
Then there are p € P and r > 0 such that

T > {¢p € ¢(X3E) s plo(x)] =, vx ‘e K(T)} 3

by contradiction : if this is not the case, there is a sequence
o, € ¢(X3E)\ D such that sup pn[v(x)] = n-4; then
. x€X

[ 2 [_J
B={z ¢, n% g s £ |c|=1]}
n=1 n=1

'is a bounded Banach disk of cé(xgz) end the sequence ng, tends to
0 in v(I;E)B, which is contradictory to g, £ D. The conclusion
then follows from the last part of theorem 4.
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Theorem 8, If cs(x) is bornological and if X satisfies the
first axiom of countability, then the bornological space associa=-
i t
ted to CP"S(X;E) is the space cpé’s(x;m), where P! is the system
of semi~norms of the bornological space associated to (E,P‘). In

particular, if CS(X) and (E,P!') are bornological, then Cp: S(X;E)
’
is bornologicale

Proof. This is theorem V.4.12 of [4] but one can proceed as
in theorem 9 for the proof of the particular cese, which simpli~
fies considerably the developments used there.

Theorem 9, If CS(X) is ultrabornological and (E,P) a Fréchet
space, and if X satisfies the first axiom of countability, then
CS(X;E) is ultrabornological,

Proof. By part a) of theorem 2, CS(X;E) is already a Mackey
spaces To conclude, it is then sufficient to show that every li=
near functional % on €(X;E) which is bounded on the fast conver=-

gent sequénces of CS(X;E) is continuous. But then
T = {9 € ¢(X5E) : |g(e)| = 1}

is absolutely convex in €(X3;E) and absorbs the fast convergent
sequences of CS(X;E). By theorems 4 and 5 and by part 4) of theo-
rem 1, K(T) is a finite subset of X. Proposition 6 permits then
to define a functional @ on the ultrabornological space

= E,
I XGE(T)( B by

a(f) = o(g), Vf € F ,

if ¢ € ¢(X3E) is such that @(x) = f(x) for every x € X(T). Then
@ is a linegr continuous functional on F since it is bounded on
the fast convergent sequences of F. Therefore there are conti-

nuous linear functionals Zx on (E,P) for x € K(T) such that

g(g) = = %, [o(x)], VYo € €(X;E)
x€K(T)

Hence the conclusion.
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