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EQUIVARIANT EM3EDDINGS OF G-SPACES 

JAN DE VRIES 

Amsterdam 

1. Introduction 

Let G denote an infinite topological group with unit e. An aotion of G, 

on a topological space X is a continuous mapping TT: G*X -• X such that 

Tr(e,x) - x and Tr(t,Tr(s,x)) « Tr(ts,x) for all x e X and s,t e G. If % is an 

action of G on X, the ordered pair <X,TT> is called a G-spaee, If <X,ir> and 

<Y,a> are G-spaces, then a morphism of Gspaees, f: <X,TT> -*- <Y,a>, is a con*-

tinuous function f: X -*• Y such that f (ir(t,x).)-> a(t,f(x)) for every (t,x) e 

GxX; any mapping satisfying this relation will be called equvoariant, so 

that we can speak of equivariant embeddings, etc. In [4], D.H. CARXSON asked 

whether of each Tychonoff 1R-space can equivariantly be embedded as a dense 

subspace in a compact Hausdorff IR-space. Motivated by categorical questions/, 

we asked a similar question for G-spaces in [13], and in [14] we character­

ized the G-spaces for which the answer is "yes", thus generalizing a compact— 

ification theorem of R.B. BROOK [3]. In [16] it is shown that this character^ 

ization is satisfied by every Tychonoff G-space, provided G is locally com­

pact. In the present paper we shall give a unified approach to this problem 

and its solution. In particular, the proof will be different from and inde­

pendent of the results of [13] and [14]. For applications of our compactifi-^ 

cation theorem, which generalize results from [5], [10] and [11] for certain 

embedding problems, we refer to [16]. 

We shall now establish some notation and terminology. If <X,TT> is a G-

space, then by TT X:= Tr(t,x) =: TT t (teG, xeX) continuous mappings TT : X -* X 

and TT : G -*• X are defined. Note that TT = 1 , the identity mapping of X, and 
Xst s t X t 

that TT - TT Off for s,t e G. In particular, it follows that each TT is a 

homeomorphism of X onto itself. (Occasionally, we write a (b) :*- a(a,b) ••: a, (a) 

for arbitrary functions of two variables.) 

The symbol IK will always denote either lor C (the real or complex 
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number field). If X is any topological space, C (X) will denote the Banach 

algebra of all K-valued bounded continuous functions on X, endowed with the 

supremum norm. A C -subalgebra of C (X) is a closed subalgebra of C (X) con­

taining the constants and closed under complex conjugation. The constant 

function on X with value 1 will be denoted u^. 

By a compactsfication of a space X we mean a continuous mapping f: X + Y, 

where Y is a compact Hausdorff space and f[X] is dense in Y. A proper compac-

tification of X is a compactification f: X •> Y such that f is a (dense) em­

bedding of X into Y. Two compactifications f.: X •> Y. (i=l,2) are said to be 

equivalent if there is a homeomorphism g: Y -> Y such that f? = g
0f,- The 

following theorem concerning the relationship between C -subalgebras of 

C (X) and compactifications of X is well-known: 

*•'• THEOREM* Let X be a topological space. TJien the following statements 

are true. 

(i) If f: X -* Y is a compactif ication* then the induced mapping 

C(f): h H* h°f: C (Y) -* C (X) 
u u 

•k -k 

is an isometrical isomorphism of the C -algebra C (Y) onto a C -sub­

algebra of Cu(X). 

(ii) If A is a C -subalgebra of C (X) then there exists a compactif ication 

f: X -* Y of X such that the range of C(f) equals k; this condition de­

termines the compactif ication uniquely, up to equivalence. 

PROOF, (i): easy; see also [8], 4.2.2. 

(ii): see [8], 14.2.2. D 

We need the following well-known supplements to this theroem: 

1.2. PROPOSITION. A compactification f: X •* Y of X is proper iff the range 

A of C(f) in C (X) separates points and closed subsets of X {i.e. if Z c x 

is closed, then (VxcX-Z) (3h€A) (h(x)=-l&h[Z>{0>)) • D 

1#3' PROPOSITION. For i - 1,2, let f.: X->Y. be a compaetification of the 

space X, and let A. denote the range of C(f.) in C (X). The following con­

ditions are equivalent: 
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(i) There exists a continuous mapping g: Y -> Y . 

(ii) There exists a linears multiplicative mapping T: A9 -*- A. such that 
T ( ux> = V 

In that case, g and T are related to each other by 

C(f,)oC(g) = ToC(f2), 

and they determine each other uniquely. In particulars there exists a con­

tinuous mapping g: Y -> Y? such that f? » g»f iff A c A . 

PROOF. Use [8], 7.7.1. D 

1.4. The uniqueness statement in 1.1(ii) is a direct consequence of the last 

statement in 1.3 which, in turn, follows from the non-trivial implication 

(ii) =-> (i) in 1.3. 

Among the possible applications of 1.1 and 1.3 are the existence proofs of 

the Stone-Cech compactification for a Tychonoff space X (take A *- C (X)) 

and of the Bohr compactification for a topological group G (take for A the 

algebra of all almost periodic functions on G); the universal properties of 

these compactifications are, of course, consequences of 1.3. In the case of 

the Bohr compactification of a topological group G, the additional algebraic 

structure of G is carried over to the compactification by means of 1.3. See 

[8], §14.7. We shall use a similar procedure for G-spaces in order to obtain 

(proper) equivariant compactifications. 

In accordance with our definitions, an equivariant compactification of 

a G-space <X,TT> is amorphismf: <X,TT> -* <Y,a> of G-spaces such that f: X->-Y 

is a compactification of X; if f: X ->• Y is a proper compactification, then 

we speak of a proper equivariant compactification. Following other literature 

(e.g. [1], [15]), a (proper) equivariant compactification will also be called 

a {proper) G-compactification. 

2. Compactifications of G-spaces 

2 . 1 . Let <X,TT> be a G-space. Define TF: GxC (X) -»• C (X) by 



488 

îr .(t, ,f) .:- t*к fpr (t,Ö є G*C (X). 
u 

So ir • C(ir ): C (X) •* C (X), and T is an isometrical isomorphism of the 

C*~algehra C (X) onto itself such that ir^dO - u__. Moreover, w 
U
 «Mflt *t **S 

tity mapping of C
u
(X) and ir - ir «ir for s,t € G. 

In general, ir is not continuous on G*C (X) (see 2.3 below). The following 

lemma gives some information in this respect: 

2.2. LEMMA. Let f e C (X). The following conditions are mutually equivalent: 

(i) 1. ir is continuous at the point (e,f). 

2. ir is continuous at some point (s,f), s e G. 

3. ir is continuous at all points of G*{f). 

(ii) 1. ir-: G + C (X) is continuous at e. 

2. irf: G -*• C (X) is continuous at some point s c G. 

v 
V K X 

2 . {£<>ir } v ie equiaontinuoue at eome point s e G. 
X X€& 

3. {foir } is right-nmiformly equicontinuous on G. 

(In (i'ii)j C (X) has to be considered as a uniform space in the usual way* 

the uniformity being derived from its norm topology and its additive struc­

ture; in (ii)3 and (iii)3j the right uniformity on G has to be considered.) 

PROOF. The following implications are either evident or trivial consequences 

of the definitions: 

(i)l • (ii) 1 < • (iii)l 

(lii)2 
x 

(i)2 • (ii)2 * — 

/ 
(1)3 4-. (ii)3 * y (iii)3 • 

2.3. EXAMPLE. Consider the G-space <G,X>, where X(t,s):« ts. Then f e Cu(G) 

satisfies condition (ii)1 of lemma 2*2 iff f is right-uniformly continuous, 
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that is, iff f e RUC(G). In general, however, RUC(G) i C(G) (cf. [6]). 

2.4. Motivated by the terminology which is applicable to example 2.3, we 

shall say that an element f of C (X) is TT-uniformly continuous whenever it 

satisfies the conditions of lemma 2.2. The set of all 7r-uniformly continu­

ous functions on X will be denoted TTUC(X). 

2.5. LEMMA. If X is compact, then TTUC(X) - C(X). 

PROOF. A straightforward verification of 2.2 (iii)l. D 

2.6. PROPOSITION. Let f: <X,7r> -*• <Y,o> be an equivariant compactification 

of the G-space <X,TT>. Then the range of C(f) is a -n-invariant C -subatgebra 

of C (X) which is contained in TTUC(X). 

PROOF. Let A be the range of C(f). Then for every t e G, 

:!rtoC(f) -- C(fo7r
t) =- C(atof) - C(f)oafc. 

It follows easily, that A is ir-invariant (that is, TJ g e A for every t e G 

and g e A). Moreover, o is continuous on G*C (Y) by 2.5 and 2.2, and C(f) 

is an isometry of C (Y) onto A; so the above equalities imply that TT is con-

tinuous on G*A, that is, Ac. TTUC(G). Finally, by 1.1, A is a C -subalgebra 
of C (X). D u 

2.7. PROPOSITION. Let A be a H-invariant C -subatgebra of C (X), and suppose 

A _c TTUC (X). Let f: X •+• Y be the corresponding compactification of X (cf. 

theorem l.U. Then there exists an action o of G on Y such that f: <X,TT> 

-*• <X,a> is an equivariant compactification of <X,TT>. 

PROOF. For every t e G, IT |̂ : A -»- A is a linear and multiplicative isometry 

of A into itself such that TT (u_.) - u . By 1.3, there exists a unique con-
t t ~t 

tinuous mapping a : Y -*• Y such that C(f)oC(o ) - ir oC(f), that is, 
t t e st s t 

o of m f01T . it is easily verified that o - lv and that o » a °o for 
1 t 

all s,t € G. It remains to be verified that the mapping o: (t,y) H- a y: 

G*Y -*• Y is continuous, and for this it is sufficient to show that h©o: G*Y± 

K is ̂ continuous for every h € C(Y). So fix (t,y) € GxY and h e C(Y), and 
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note that for any (s,z) e GxY 

|hoa(s,z) - hoa(t,y)| < tla(s,h) - a(t,h)ll + (a^hU) - ̂ ( y ) | . 

It is easy to see that a: GxC (Y) + C (Y) is continuous (indeed, TT: GXA -• A 
r«f-

is continuous, and C(f): C (Y) ->- A is an i some try); moreover, a h: Y -> K is 

continuous. Using this, the continuity of h°a follows from the above ine-< 

quality. Q 
Q 

2.8. Let TOP be the category of all G-spaces and equivariant continuous 
Q 

mappings. It is not difficult to show that the full subcategory COMP of all 

p 

compact Hausdorff G-spaces is reflective in TOP . For details, see [13, sub­

section 4.3] . This means that for each G-space <X,*rr> there exists a "maximal" 

equivariant compactification f: <X,TT> -*• <Y,a> with the following universal 

property: for any equivariant compactif ication g: <X,TT> -»- <Z,r,> there exists 

a unique morphism of G-spaces g: <Y,a> ->• <Z,C> such that g - g°f. 

Using 2.6, 2.7 and 1.3, it follows that this maximal G-compactification of 

<X,TT> corresponds to the largest ir-invariant C -subalgebra of C (X) which 

is contained in TTUC(X). We show that this is the whole of TTUC(X): 

2.9. PROPOSITION. The subset TTUC(X) of C (X) is a TT- invariant C -subalgebra 

O/Cu(X). 

PROOF. Obviously, TTUC(X) is a subalgebra of C (X) containing u and invariant 
u * A 

under complex conjugation. In order to show that it is a C -subalgebra of C (X) 

(i.e. that it is closed in C (X)), consider f € C (X) ~ TTUC(X). NOW there 

exists z > 0 such that for every neighbourhood U of e in G there are t e U 

and x e X with |f oTr(t,x)-f (x) | > e. Then for any g e C (X) with II f-gll < e/3 

we have 

Igoir(t-x) - g ( x ) | > |foTr(t,x) - f ( x ) | - 2llf-gll > e / 3 , 

whence g i TTUC(X). This shows that TTUC(X) is closed in C (X). Finally, in 

order to prove that TTUC(X) is invariant, consider h e TTUC(X) and s e G. By 

2.2 (ii)2 there is a neighbourhood V of e in G such that 

|f(Tr(t,x)) - f(Tr(s,x))| < E 
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for all t e G with t e Us. Writing f(Tr(t,x)) = U f)(7r(s t,x)), and substi­

tuting u for s t, we see that 

ftSfOr(u,x)) - *sf(x)| < e 

for all u e s Us. Since s Us is a neighbourhood of e, it follows from 

2.2 (ii)l that £Sf € TTUC(X). D 

2.10. PROPOSITION. If G is locally compact Hausdorff and X is a non-compact 

Tychonoff space, then TTUC(X) contains a ^-invariant C -subalgebra A of C (X) 

which separates points and closed subsets of X, such that d(A) <. max{d(G), 

uKX)}. 

(Here d(A) is the density character of A, i.e. the least cardinal number of 

a dense subset of A, and UJ(X) is the weight of X, the least cardinal number 

of an open (sub)base for X). 

PROOF. (outline). Let B denote a local base at e in G such that each U e B 

has compact closure in G, with cardinality \B\ = Zw(G), the local weight of 

G. Fix for every U e B a continuous function \\> : G -> [0,3] such that. ikT(e) =» 

= 0 and ^n(t) - 3 for t e G~U. Clearly, for every U e B the set 

ATy= {t e G: ^lT(t) ^ 2} is compact. In addition, let F £ C (X) be a subset 

which separates points and closed subsets of X; F can be chosen such that 

|F| = w/(X) (use [7], theorem 2.3.8). Set 

fTJ(x):-= i n f U ^ t ) + f(7T
tx)} 

teG 

for every x e X, f e F and U € B. Clearly, the infimum can be taken over 

the compact set A... It follows that f e C (X). It is not difficult to show 

that for every t e G 

|fu(Tr(t,x))-fTJ(x)| < max/inf{i|;TT(ur
1)-i|;TT(u)}, inf UTT(ut)-^TT(u)}] Kfinfíij/ytut ^ ( u ) } , inf{ij;u(ut)-^u(u)}l. 

\ueG ueG / 

Since ^TJ is left-uniformly continuous, it follows that f.. satisfies condition 

2.2 (ii)l, so that f e TTUC(X). Finally, the set F*:-» {?n! (f,U) e FxB} sep­

arates points and closed subsets of X. Let A be the C.-subalgebra of C (X) 
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generated by the set U{TT [F ]: t e G}. Then it is not difficult to se2 that 

A has all required conditions. In particular, if S is a dense subset of G, 

the set of all linear combinations with rational coefficients of finite pro­

ducts of elements of U{TT_[S]: f e F } is dense in A. So indeed d(A) < 

< Knd(G)!F*| - d(G) JbO(G) 0>(X) < max{u>(G), W(X)} (since X is non-compact, 

tO(X) > «Q) . D 

2.10. THEOREM. If G is a locally compact topological group then every G-space 

<X,TT> with X a non-compact Tychonoff space has a proper G-compactification 

f: <X,ir> -*• <Y,a> such that u)(Y) < max{L(G/GQ), M;(X)}^ where G is the sta­

bilizer of <X,TT>. 

(Here L(Z) denotes the Lindelof (or: covering) degree of the space Z, i.e. 

the least cardinal number fc such that each open cover of Z has a subcover 

of cardinality <. K) . 

PROOF. By definition, GQ:-- {t e G: (VxeX) (Trx--x)}. Then G is a closed nor­

mal subgroup of G, so G/Gn is a locally compact Hausdorff topological group, 

which acts in a natural way on X, thus defining a G/G -space <X,TT*>. By 2.9, 

2.7 and 1.2, there exists a proper G/G -compactification f: <X,ir'> -*• <Y,a'> 

of <X,irf>, and we may assume that vo(X) = d(C (Y)) <. max{tU(G/G ) , M;(X) } (cf. 

also [8], 7.6.5). However, G/GQ acts effectively on X, so &tf(G/G ) < u)(X) 

(cf. [12]). Since ^(G/GQ) =- max{£w(G/G ) , L(G/GQ)}, it follows that M;(Y) < 

< max{L(G/Gn), W(X)}. Finally, Y can easily be turned into a G-space <Y,a>, 

and it is then not difficult to show that f: X ->- Y is also equivariant with 

respect to the actions TT and a on X and Y respectively. So f: <X,TT> -** <Y,a> 

has all required properties. D 

2.11. REMARK. In a similar way it can be shown that if G is locally compact 

the ''maximal" G-compactifica'tion of a Tychonoff G-space (cf. 2.8) is proper. 
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