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ON NORMALITY OF THE PRODUCT OF TWO SPACES

M. ATSUJI
Tokyo

Let X be a Tl space, Y a topological space, and p an accumula-

tion point in X. We define an accumulation degree of p by

a(p) = min {|A]; p e & = {pJ },
where |A| means the cardianl of the set A.
w(m) is the initial ordinal of an infinite cardinal m, and we
define a property B¥(m) of Y: For any decreasing closed family
{Fscz Y; Bew(m)} with M\ FB = ¢, there exists an open family

{GBC Y; Bew(m)} such that FBC Gg for each PRew(m) and f\%

= ¢ . The property B¥( X ) is nothing but the countable paracompact-
ness([2]). A similar notion is defined by Zenor[5]: A space is said
to have property B if for any well-ordered monotone decreasing family
{Ha; aeA} of closed sets with no coﬁmon part, there is a monotone
decreasing family of domains {Da; oeA} such that Hac; Da for each
o in A and {cl(Da); aeA} has no common part. (Yasui[4] defines a
weak B-property which is obtained by removing the monotone decreasing-
ness of the family of domains in Zenor's property B, and shows that
Yasui's property is strictly weaker than Zenor's one). Zenor shows

in [5] that the paracompactness implies the property B. Since the
property B follows the property B¥(m) for any m, a paracompact space

has the property B¥(m) for every m.

Let {EX<: Y; xeZ C X} Dbe any family of subsets of Y with index
set in X, and let p a point of X, then we write
lim_sup EX = < E_ ,
p UeN(p) xeU X
where N(p) is the neighborhood system of p. Now we have

Proposition. Suppose X x Y 1is normal. Then for any closed
family {EX<: Y; xeZ c X} with limpsup EX ='¢ for a point p of X,
there exists an open family {DX C Y; xeZ' € X} satisfying Z < Z',
EX(L DX for xeZ, and limpsup Dx = ¢

Proof. Let us put

E=w (x, ED,
X€Z



26

then E and (p, Y) are disjoint closed subsets of X x Y because

Elp] = 1impsup E .= ¢ (ef. [11),

where E[p] is the slice of E at p. Therefore there exist disjoint

open sets G1 and G? containing E and (p, Y) respectively. Putting
D, = Gl[x] for each x ¢ pry Gl = 7', we get the desired family
{Dx; xeZ'}. 1In fact, for an arbitrary point y of Y, there exist
neilghborhoods U and V of p and y respectively such that U x VC G2.
V and Dx are disjoint for every x in U, so that y ¢ v Dx =

xeU

~ ﬁ; ; since y is arbitrary, we have
xelU

N N D'_x—=¢.
UeN(p) xeU

Corollary 1. Suppose X contains an accumulation point p with
a(p) =m. If X x Y is normal, then Y has the property B¥(m).

Proof. p 1s an accumulation point of a subset A of X with |A|
= m; we may assume p does not belong to A. Let {xB; Bew(m)} be
a well-ordering of A, and let {Fst: Y; Bew(m)} any decreasing

closed family with no common part. Let us write Fx = FB’ then we
have 1lim_sup F = ¢. In fact, B

™ o F, = ~ F,oo= A Fg = ¢,

UeN(p) xBeU B UeN(p) By Bew(m)

where BU 1s the least index of xB belonging to U; the second

equality 1is verified as follows: q £ /M FB implies the
Bew(m)
existence of FB which does not include q, and so q ¢ FY for all
o
Y2Bo. Since |{xY; Y<Bo}| < m, p does not belong to 1xY; Y<BoT,
v3 Y<Bo} 1s disjoint from' some neighborhood Uo of p, so

>Bos and q is not in F and not in M\ F .
== X S X
BUO UeN(p) By

namely {x
that BUO
Therefore, by Proposition, there exists an open family {ch: Y;
xeZ' < X} such that AcC Z', F_ c G for x,eA, and lim_sup G.
XB xB B p X

= ¢. Since p is an accumulation point of A, we have

NG = b5

xBeA B
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in fact, suppose N G includes a point y, then, since an
xBeA B
arbitrary neighborhood U of p includes some XS’ y belongs to 6;
x€eU
and to N\ v G, = ¢, the contradiction.

UeN(p) xeU X

Corollary 2 (Dowker). Suppose X includes a sequence of points
with an accumulation point in X. If X x Y 1s normal, then Y is

countably paracompact.

About a month after this Prague Symposium the author received a
pre-print[3] from Prof. M.Rudin in which the definition and the
existence of a k-Dowker space were given for an infinite cardinal «.

A k-Dowker space 1s a normal T, space which has a decreasing closed

2
family {DA; A<k} such that Dy = ¢ and, if {Ux; A<k} 1is an
3 < U for each X, then N U, # ¢. Since a k-

Dowker space of k = N does not have the property B¥(m), we

open family with D A

w(m)
can immediately conclude by Corollary 1 above that the following
Morita's conjecture is true.

Corollary 3 (Atsuji-Rudin). If X x Y is normal for any normal
space Y, then X is a discrete space.
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