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DESCRIPTIVE COMPLEXITY OF FUNCTIONS

M. KATETOV

Praha

If continuous functions are considered as "simple", i.e. of mi-
nimal complexity, then the complexity of a discontimuous function £
may be conceived as the minimal complexity of a suitable procedure
by means of which f is obtained starting from contimuous functions.

A well known procedure (the classical one of the descriptive
theory) consists in transitions from sequences to their pointwise
limits, every transition increasing the complexity by 1. Another
procedure (see e.g.(11) yields discontimious functions as limits of
filtered families of continuous ones. In this case, the complexity
of £ is, by definition, the least type of a filter yielding f. This
kind of complexity is considered in Section l. A broader concept al-
80 introduced in Section 1 is specialized to a certain kind of "qu-
antitative" complexity in Section 2. It turns out that this kind of
complexity includes e.g. the € —-entropy.

1.

l1.1. With slight deviations, we use the standard terminology
and notation. The ordered set of non-negative reals is denoted by
R,. The Fréchet filter on N, the set of natural numbers, is denoted
by N' . If T is a set or a topological space or a metric space,then
F(T) denotes the set of all real-valued functions on T endowed, as
a rule, with the weak topology (the topology of RT); M(T,T) denotes
the set of all mappings f: T—> T endowed, in the case of a bounded
metric T, with the "sup-distance" dist (f,g) = sup{dist (£(t),
g(t)): te Tt ; C(T) denotes the set of continuous fe F(T) endowed,
as the case may be, either with the topology inherited from F(T) or
with the "sup-distance"”.

We recall the following definitions (see e.g.[l]). If & and G
are filters on A and B, respectively, then a morphism from ¥ to G
is a triple <¢ ,%,G > denoted often by ¢ : F—> G or siuply by
¢ , such that @ is a mapping of A into B and ?-1 [ Gle F whenever
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G €G . The types of filters are introduced as follows: Typ % z
zZ Typ G iff there is a morphism ¢ : F—>G , and Typ ¥ = Typ G
iff Typ & 2 Typ G 2 Typ ¥ . In this way, the class of all types of
filters is endowed with an order.

1.2. Proposition. In the ordered class of all filter-types,the
join (meet) exists for every (every non-void) subset. - This foll-
ows at once e.g. from [2], 2.2.

1.3. Definition. If V =(V, 2 > 1is sn ordered set, th-r =
mapping ®: A—> V, where A is a set, will be called a V-evalua-
tion on A and (A, w?> will be called a V-evaluated set. If &
and w are, respectively, a filter and a V-evaluation on a set A,
then (% ,A, w? will be called a V-evaluated filter, If F =
= (F,h >, & =<G,B,»> sare V-evaluated filters, then a
triple <g,F, & » will be called a morphism from F to ©
provided (1) g: F-—> G is a morphism, (2) (@ (a))=3 wla)
for all ae A. Feor a fixed V, the types or V-evaluated filters and
the order on the class of these types are introduced by means of
morphisms in the same way as for filters (see 1.1). Explicit defi-
nitions may be omitted.

l.4. Proposition. For a fixed V, the class of all types of V-
evaluated filters is relatively complete, i.e. every subset has a
unique join agnd every non-void subset has a unique meet.

This follows at once from the obvious "V-evaluated" generali-
zation of [21, 2.2.

l.5. Definition. Let P be a closure space and let SCP be den
se in P. Let xe P. Consider all filters % such that, for some fa-
mily (s, : 2eA), s €S, we have x = F-lim s,. The meet (the grea-
test lower bound) of types of such filters will be called the des~-
criptive complexity of xe¢ P with respect to S and will be denoted
by de (x,P,S). Let T be a functionally Hausdorff topological space.
It fe¢ F(T), then dc (£,F(T),C(T)) will be called the descriptive
complexity of £ (as a function on T) and will be denoted by dc f.

l.6. Remarks. 1) It is sometimes useful to introduce a rela-
ted concept obtained by considering, in 1.5, only filters ¥ of a
certain class (e.g. filters on countable sets). - 2) A variety of
descriptive complexity is obtained if, in 1.5, "topological” is
replaced by "uniform" and C(T) consists of uniformly continuous
functions. - 3) If T is of uncountable weight, it may happen that
dc £f< Typ X' for a function f of the rirst Baire class. - 4) Clear
ly, if £ is of Baire class o« , then dc £ £ oc = Typ N'® (see [1],
5.1, 5.2). I do not know under what additional conditions de¢ f =«
can be asserted.
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1.7. Theorem, The descriptive complexity of a function f on T
is equal to the type of the filter of all Un C(T) where U is a ne-
ighborhood of £ in F(T),

1,8, Theorem, Let fa’ a€ A, be functions on a topological spa-
ce T. Let &% be a continuous function on the topological space RA.
Put g(t) = g(fa(t): a€ A) for te T. Then the descriptive complexi-
ty of g does not exceed the l.u.b. of de (fa).

1.9. Corollary. For any topological space T and f£,ge F(T),
de (f + g)4 sup (de f,dec g).

1.10. We recall that, for any filters § and G (on A and B,
respectively), # « G designates the filter on AxB consisting of
all Xc AxB such that, for some F ¢ F , ac F implies {bt <a,b > €
eX3teG.Wepu Typ (F.G) =Typ § . Typ G- »

1.11. Theorem. Let fgs ae A, and £ be functions on T, Let &
be a filter on A; assume that £ = 4 -1im f£_. Then dc (£)4 Typ .

. 'sup de (fa)'

The proofs of theorems 1.7, 1.8, l.l1 are straightforward and
therefore omitted.

1.12, Theorem. If T is both Fs; and G,~ in a compact metrizab-
le space, then the descriptive complexity of any function on T is
equal to the type of a filter on a countable set.

We are going to prove that the assertion holds if T is assum-
ed to be compact metrizable. From this special case (stated with-
out proof in [1), 4.8), the theorem follows easily. Now let f ¢
€ F(T), T compact metrizable, £ none C(T). Choose a countable M
dense in C(T) endowed with the usual sup-norm |x| = sup | x(t)} .
Let W (f) be the filter of all neighborhoods of £ in F(T). Clear-
ly, Typ {WaM: W e w(£)} = Typ W(f). We are going to prove that
there is a morphism of W(f) into W(LIMM = {WnM: WeW(r)2.

Choose distinct 8, € T, ke N, such that £ restricted to {ak}
is not continuous. For any ge€ C(T) let p(g) be the largest ne N
such that lg(ak) - f(ak)| £ (n+ 1"} for k<n (p(g) is defined
correctly since f cannot coincide with the continuous function g
on all &, ).

Now let ¢ : C(T) —> M be such that, for any g€ C(T), we have

plg)eM, lg -~ 9(g)l £1/p(g). We are going to show that ¢ is
a morphism from W (f) to W(f) MM, It is sufficient to show that,
given v € T and € > O, there is a finite Kc T and a positive d”
such that lg(g)(w) - f(x )| < & whenever lg(t) - £(¢t)) < o
for all te K., It is easy to see that K = -{fr:,ao,...,aq} » where

q>2/¢€ , and d"=%- satisfy the condition just mentioned,
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Remark. I do not know what conditions on T broader than those
in 1.12 are sufficient to ensure that all dc £, fe F(T), are types
of filters on countable sets.

1.13. We introduce the following pre-order on the class
U F(T) of all real-valued functions on topological spaces: if £,
g e UF(T), we put £2 g iff there exists a continuous h: Df —> Dg
(Df, Dg are domains of f, g) such that £ = go h.

1.14. Theorem. For every filter-type g there exists a func-
tion A such that de¢ £ £ 13 if and only if £ 3 A -

Proof. Let g =TypF , 3 being a filter on a set A, Let
Sc R® consist of all (xa: ae A) such that F-lim x, exists (and is
in R). For any x = (xa)e S, put A(x) = F-linm X - It is easy to
show that, for any £f e UF(T), de £4TypF iff £ <= QA .

24

In this section we introduce a rather special kind of comple-
xity which is different from the descriptive one (see 1.5) and
could be called "quantitative"., The theorems below, though almost
evident (once the definitions are stated), show that this concept
embraces some important cases.

2.1, Put V = Rp< R_. Consider the class, denoted by ® , of
all <V, N, @2 , where @ 1is a V-evaluation on N and, with
@ (k) = {w(k), A(k)>, we have A(k)— Q for k — 00 ., If
(N, N,0> € ol , then Yo will designate the function on R,
defined by Yp (&) = inf (@ (k): ke N, A(k) & € ); for & =0,
the value g (0) = = inf @ is admitted, whereas for € > O, we
have vy (€)e R, (since A(k)—> O for k —> ©@ ). Clearly,
Yo ( 21 B vy (g,) if €, % €,

2.2, Proposition. If <J ,N, @;> € & , 1 =1,2, then
Typ <X ,N, ;> 2 Typ <X ,N, ¢, > (see 1.3) if and only if

! The proof is easy and may be omitted.
2.3. By 2.2, we may adopt the following convention: if

N,N,@o>ecd , we put Typ {N',N,@> = Vo °

2.4. Definition. Let P be a set, Sc P, Let w be an R -evalu
ation on S and let o° be an R -evaluation on a set Q> PxS. Let
x€P and assume that the set =, of all sequences (s,), s, e S,such
that J(x,s,))—> O is non-void. For any 6 = (s)) € =, define a
V-evaluation @ on N as follows: Qg(n) = (@ (sy), d(x,8,)2 .
Clearly, {N',N, 95> € & . The g.l.b. of all Typ <N ,N,@z > ,

e S, will be called the complexity of x with respect to P,S,w-
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(cozplexity of elements of 3), and o . (If some of P,S,,d are
clear from the context, then they need not be mentioned explicitly.)
= If the complexity, say € , of x is equal to some Typ <N ,N,@?,
then, by 2.3, § = Yo »end hence lim§ = lim yp () for €—> 0 is
defineds It will be called the limit complexity of x.

Remark. Observe that the complexity of x may be distinct from
all types Typ { W' ,N,p > . However, in all cases considered bel-
ow, there i1s a smgllest element in the set of all types
Typ <N, N, 06> , 8 = .

2.5, We are now going to consider € ~entropy (2.6, 2.7), met-
ric dirension (2.8, 2.9) and approximaticn of continuous functions
by polynomials of prescribed degree (2,10, 2.11).

Concerning € -entropy, introduced by A.N. Kolmogorov in 1956,
ard degrees of polynomial approximation En(f), congidered in det-
2it for the first time independently by S.N. Berngtein and D, Jac-
‘kson about 1912, basic facts can now be found in various books,

aee 2.00 [ 31, For wetric dimension see e.go [41.

2,6. There are various slightly different definitions of met-
ric entropy ( € —entropy) of a totslly bounded metric space T. We
will use the following one: for every € Z 0O, the €-entropy
H(g ,7) of T is equal to log N(g ,T) where N(g,T ) is the least
cardinality of an €=-net in T (thus, H(0,T) = co provided T is in-
finite), the metric entropy of T is the function e —> H(E,T) de~
fined on R+.

2.7 Theorem. let T be a totelly bounded non-void metric spa-
¢8e The metric entropy of T ig equal to the complexity of the idemr
tity napping JT: T—> T with respect to the set of gll finite-ran=-
ge mappings g: T—>T, their complexity defined as log card g (TI],
and the sup-distance.

This theorem is proved in a straightforward way using only the
definitions and almost no facts concerning the € —-entropy. For this
reanson, the proof of 2.7, as well as of 2,9 and 2,10 below is omit-
bads

2.8, We recall that the metric dimension wdim T of a totally
bounded metric space T is defined as follows: «dim T£m iff, for
every € > 0, there exists 2 finite open covering G of T such
that (1) diam G € & for 211 C € G , (2} G is of order £m + 1.

2.9, Theorem., The metric dimension of a totally bounded metric
space T is equel to the limit complexity of the identity mapping
ings g3 T——>T, their
) tepg {TIY minus 1,

-

J: T——»T with reepect to finite~range mav
complexity defined ss the order of 1cdg
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and the sup-distance (in M(T,T)).

2.10. We recall that if KcR is compact non-void, then for any
feC(K) and any neN, E (f) designates the g.l.b. of |f - p \ ,whe-
re p is a polynomial of degree % n.

2,11, Theorem. Let KXc R be compact non-void. Then, for any
fe C(K) and any n, B (f) = inf {€ : y (€)£n} where y is the
complexity of £ with respect to the set of polynomials, their deg-
ree, and the sup-distance in C(K).
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