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AN APFLI CATION OP MODULAR SPACES 

TO INTEGRAL EQUATIONS 

J . MUSIELAK 

Poznan 

1 . Let (12 , 2 ,|u.) be a measure space , jbc f i n i t e t and l e t % be 

the space of real-Valued, £-measurable functions on JX with equality 

v t -a .e . Let a function k: Six Six [0^)^,10^) (cal led in the sequel 

the kernel ) be measurable in Sl^Jlx[0}oo) f k ( t , s , u ) continuous and 

convex as a function of u € fOtoo) for a l l ( t t s ) G - i l *S1 » k(t,s tu)-*0 

i f f u = 0. The following integral equation may be considered : 

(1) x ( t )» <tt5k(t,s t |xte;l)d|*(e)+ x Q t t ) . 

Now, one invest igates usually solutions of th i s equation belonging to 

a fixed function space, as It (£l9Z 9/u,) or the space of continuous 

functions C(J2) in case Si i s a compact topological space* The aim of 

the resul ts presented here i s to consider the solutions of the above 

equation as elements of a certain space X^ which depends on the ker­

nel k. The treatment may be generalised, namely, one may observe that 

the integral at the right-hand side i s a modular, as considered in the 

theory of modular spaces* The general theory of modular spaces depen­

ding on a parameter, as needed here, was presented at the Third Prague 

Topological Symposium 1971 f4] by A#Waszak and myself. We shal l adopt 

here the notation introduced in [4]« The invest igation of modular 

equations i s due to T.M. J^dryka and myself ([1] t [2]]. 

2m Let <o : JC2x 9E ~-s> fOtoe>] be a family of convex modulars on 

96, i . e . <o(t tx) ^ 0 t <o(t,x)« 0 jic-a.e. implies x a 0, <o(t,-x) -» 

• <0( t t x) , § ( t , ocx+fVy)^: cc§(kfx)+ (i<o(tfy) for cC t ( l^o t rf+(8»1f 

and £>(ttx) i s 21 -measurable in the variable t e X I for a l l x e ^ • 

We denote by X the set of a l l xe3f such that (C(t, AiC.O as 

*\ -> 0 |tc-a#e. in St and we res tr i c t p to the product _v2* X • 

Then <o ( x ) s 5 @$*'*)&V' i s a "Modular *n * a*1** 

X =|xt x £ X t (Og(xx)-^>0 as A-3>0] 

i s the modular space generated by means of the modular p • I t follows 

from the def ini t ion of X, that an element x e X belongs to X- i f f 
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there e x i s t s a number AQ > 0 such that <? S ^ 0
X ^ <°° * T h e s p a c e 

XD i s a no need space with norm 

IIx|| * inf ( u > 0 : <J>8(-*/u) $ 1]# 

Now, let It Six dC -5> [-â oo] be a functional such that <o(tfx)» 

»|I(tfx)| satisfies all the aboTe assumptions. Our purpose is to inTe-

stlgate the equations 

x(t)» tf I(tfx) and x(t) « # I (tfx)+ xQ(t) f -a.e.f 

where 9* * ° i o a gl^n number and x_ is a giTen fixed element of T • 

We consider operators A and B defined by 

(A(x))(t)-# I (tfx) and (Bcx)J(%)« « I (tfxj+ xQ(t)# 

Solutions of the aboTe equations are fixed point of operators A and B, 

respectiTely* We are going to find sufficient conditions in order 

that A and B be contraction operators in X^ or in the ball 

This will make possible, in case when X* is complete, to formulate 

theorems on existence and uniqueness of the solution of the above 

equations. 

3* We giTe now propositions concerning operators A and B in the 

general case* 

Proposition 5 . 1 . (a) I f for every x eX* and eTeiy A- > 0 the­

re ex i s t numbers C> 0 and A2 > 0 such that 

(2) (0(t f : \ 2 ^ ( ' ,*)) £ C(o(t f ^ x ) | t i -a .e . in J2 , 

then both A and B map X* into itself • 

(b)Let O ^ r ^ o c f 0 < R < ©© # I f for eTery x e X . and eTeiy 

X such that 0 < X £ 1/B there holds the inequality 

(5) (o(t,Xoe<o(.,x)) ^ <?(tf A | x ) px-a.e. in SL f 

then A maps K * 6 ( r ) in K (B)# I f f moreoTer. R » (1 - <fr)rf where 

0 < t& < 1 f and ||x || $bv9 then B maps K (r) into i t s e l f* 

Proof • (a) Integrating the inequality (2) oTer SL we obtain 

<?8(*2X
1A6c))* <?s(*23 (',*)) $C^s(A1x). 

Hence x e X , implies A(x)eX, . 
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(b) Integrating the inequality (3) over Jl we get (0 (\k(x)) $ 

^ (O 0(XBr~1x) • Taking X* 1/R we obtain (p8(A(x)/B) ;< ^ ( . V r ) , Thus, 

x e L ( r ) implies ACx)eK^ft)# Now, i f R »(1 -$) Tt then 

||B(x)|I^.<||A(x)ll^+||x0(l f t.< (1 - 3 J r * # r - r f 

i . e . B maps K, (r) into i t s e l f . 

Proposition 3.2«/a^ Let <o sat i s fy the condition 3.1(b) with 

R s r . Moreover, l e t us suppose that for every £ > 0 there e x i s t s 

a number K > 0 such that for every oi > 0 sad a l l x f y6 K~ (r) 

there holds the inequality 

Then A maps IC (r) into i t s e l f , continuously. This remains true for 

T m oo , where K̂  (<x?J» X * . 

(b) Let llx0|LS/v/r, 0 < # < 1 , and l e t <° sa t i s fy the condition 

3.1 (b)with H »(1 - ^Jr. Moreover, l e t us suppose that for every £>0 

there e x i s t s a number £ > 0 such that for every /yl>® a*1* *°* ^11 

x f y e Ke (t) there holds the inequality (4) . Then B maps K* (T) into 

i t s e l f f continuously. This remains true for r a w f where K^i00) • ** • 

Proposition 3 .3 . fa) Let <o sat i s fy the condition 3.14b)with 

R m r . Moreover, l e t us suppose that there e x i s t s a number cC >0 

such that for every ^ > 0 and a l l x j f L ( r ) there holds the ine ­

quality 

i?) s <?(*. I ^ y " 1 )• r- < S?Mte--)«i--
Then | |A(x)- A(j)|L $ oC|bc - y | | ^ for a l l x f y6K^(r) . This remains also 

true for r moo . I f 0 < <?C<1f A i s a contraction operator in -^ ( r ) . 

(b) Let | ( x 0 l | ^ ^ r f 0 < ^ < T 1 , and l e t <o sat i s fy the conditio* 

3.1(b)with R »(1 - ^ ) r . Moreover, l e t us suppose tiiat there e x i s t s 

a number OC>0 such that for every ^ > 0 and a l l x9y€K*Jjp) there 

holds the inequality(5) • Then | |B(x)- B(y) |l^ £ <?C l|x - jftf^ for a l l 
x f76K. (?). This remains true also in case r * oo # I f 0 <: of <*1f 

then B i s a contraction operator in K̂  (r) • 

We l imit ourselves to the proof of 3 . 3 ( a ) . Indeed, we have 
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IIAC-) -A(j) |L -Wl - i t t f {^>0t • ) < p ( t » I C ' ' X ) ^ I ( ' , : f ) , V * l } * 

4* In order to ipply the above considerations to the integral 
equation (1) f we take 

(6) I ( t ,x)« 5kC*»«tlxC»)l)dK(*)* 

Under the assumptions on k formulated in 1. f (o(tfx)» I ( t f x)sat i s f ies 
the assumptions from 2. Hence we may apply the Propositions from 3 . 
However, in order to make use of the Banach fixed-point theorem, we must 
know that the respective modular space X̂  i s complete in the norm II |L. 
The following theorem i s true (see[1]): 

Theorem 4.1. I f for every u>0 there holds the inequality 

J k(tfsfu)d|*(t) > 0 

for jtt-a.e* 8€ si f then the space X̂  with norm II IL i s a Banach 
space. 

Proof* Special case of this theorem when k(t fs fu) i s indepen­
dent of t was given in [3] , 2.31 • The present proof (see also [1]) 
runs similar l ines . First, we observe that i f a function fs -£L-̂ [0,<*>) 
i s X-measurable and positive ^c-a.e., then the measure u i s 
^-absolutely continuous, where 0(A)a 5 *(-8)^ K(8) • ^kus, taking 

C A 

£>0 and f(s)« j k( t f s f z) du Ct) f there exists a number ^ > 0 

such that v>(JL)<02 , l e Z , imply jlt(A) < £ # Let (x^) be a 

Cauchy sequence in X* and let us take any I\ >0, then 

There exists en N such that <5>
B(^(x

n - ^ i ) * 0 ! * o r ^f11^* 
Denoting B ^ n »{s e-ft t Alx^G*)- **(.•) l:> S ^ t ** obtain 

111,21 

and so ^(B^ ) < 8 for m,n>H. Consequently, (Xx^) tends to a 

function x € % in it-measure in SI . I t i s easily observed that xA 

i s of the form x^ » Ax. Standard application of Fatou lemma shows 

that QxLMXa ~ x))-* ° ** n ^ °° t *•••• lî ti "" x L ~* ° " n-JDO° • 
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5. Nowf we shall adopt the assumptions of Propositions 3.1-3.3 
to the case of the modular ^(t,x) = I (t,x)defined by(6) # Operators 
k and B are then defined as in 2. Let us write 

kJ(tfufT)« S -c|"tfsf ^k(s,u,T)]d /tc(s), 

<o*(tfx) « J kj ( t f s , |xCs)l)d(V{(s). 
*»»•£ 

Proposition 5*1 >(a^ Let 0 < r < <*? , 0 < R <<*? a ^ i e t us suppo­
se that for every x e L (r) and every X such that o < X £ 1/R 
there holds the inequality 

^ ( t f x ) ^ ^ ( J a ) ( 0 ^ f X f x) |U,~a.e. in SI • 

Then k maps K* (r) in K*G-0 for every M such that 0<\H\< 1/̂ £&L 
Cb) Let 0 < r < °° and l|x0JLS#rf where 0 < # < 1# I f for every 

x£K^(r) and eTery X such that 0 < IX £ l / d - # ) r there holds 
the inequality 

(O^t.x) ^ |U,G^)(o(tf >.(1 -31 x) ^-a .e . in .0. f 

then B maps K (r) into i t se l f for eTery ^i such that 0 <|^€/< l A / ^ , 
Proof. I t i s sufficient to profce (a) f but applying Jensen 

inequality, we get 

^ ( t f ^ ^ ^ s x ) ) ^ ^ j S{jk[t,sfXk(sfuf|xCu)l)]d|UCu)]d^C-i) -
SL 

-•-J-, «.(*.-)**(*•**-)• 
and the assumptions of 3.1(b) are satisfied. 

Proposition 5.2. (â  Let 0 < lael <. 1/iitt-SL) ^d let p satisfy 
the condition from 5.1 •Ca) with R as r. Moreover, let us suppose that 
for every fi y 0 there exists ^>0 such that for al l x,y£ K (r) 
there holds the inequality 

J { l i f e SkCt»u» AlkCu'v* I^WI)- k(u,v,jyCT)|)|]djU,Cv)|d|icCu) $ 

CO 
^k[ t f u f

l x Wjy^ l jd^Cu) for IJL-M.\€SI . 
-J2 

Then A maps K Cr' into itself, continuously. 
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(b) Let 0 < loll < \//U G-C2) and l e t <o sa t i s fy the condition 

from 5.1 • W * Moreover, l e t us suppose that for every (I > 0 there 

e x i s t s j ? 0 such that for a l l x,y € K (r) there holds the inequa­

l i t y (7) for / 4 - a . e . t €SL . Then B maps K. Cr) into i t s e l f , continu-

ously. 

Proof * We may l imit ourselves to (a) . Applying Jensen inequality 

and inequality(7) t we obtain e a s i l y 

И*. I CЛ~e I ( ,'т'Ьw S 

-**~ SL I >Slm, L 

*°r W-a.e. t & SI f i . e . the inequal ity (4) • 

In a siiailar manner, the following statement may be proved 

applying 3 . 3 . 

Proposition 5 . 3 . (a) Let 0 <M\< l/fit&l and l e t (O sat i s fy the 

condition from 5 . 1 . ( a ) with R « r. Moreover, l e t us suppose there 

e i i i s ts a number ot>Q such that for every x,yeKL,0) and for a l l 

0/[ y 0 there holds the inequality 

J {MifeT <f *[*•*• ^ r * ' ^ ' ^ ,xCy),)"kCu,Vf ' y ^ ' ^ ^ ^ l ^ ^ 

* ^ k [ t , U f wî n ,xCtt}- yCw)^ d/wCu) f o r /*~a-#- t 6 J 2 • 
Then | |A(x)- A(yJ||^ £ tf||x - y|f& for a l l x ,y <?Kft(r) . I f 0 < oC < 1, 

then A i s a contraction operator in K̂  (r) . 

(b) Let 0<|^e| c \/M.L-&) and l e t <o sa t i s fy the condition from 

5*1 • (*)• Moreover, l e t vis suppose there e x i s t s a number oC> 0 such 

that for every x,y£ K* (r) and for a l l ô > 0 there holds the inequa­

l i t y (&). Then )|B(x)~ B(y)fj^ £ rf|(x - yl^for a l l x , y e K ^ r ) . " 

0 < oC < 1 f then B i s a contraction operator in EL (r) • 

6. Applying Banach f ixed-point theorem, the following resu l t i s 

deduced eas i l y from Theorem 4.1 and Proposition 5.3 -

Theorem 6 . 1 . Let the kernel k sa t i s fy the assumptions f<wnnula~ 

ted i n 1« Moreover, l e t us suppose that for every u > 0 , the inequality 
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£ k^-s-uJdi^Lt) > 0 holds for / t - a . e . s e SI . Let 0 < /* |< l / i tC^) , 
SL l 

0 < r < oo . f i n a l l y , we suppose that there e x i s t s a number cC , 0<TcC< 1, 

such that for every x ,ye K̂ , (r) and a l l t] > 0 there holds the ine­

quality (8) for ^ - a . e . t €SL • Then 

(a) i f < ^ ( t f x K /*(&) % ( t , A x ) ^ a . e . in SI for every x6K^(r) 

and 0 < X $ 1/r, then the integral equation (1) with x rt) =£ 0 

possesses only t r i v i a l solution in the bal l K (r) , 

(b) i f jlxj ^ r , 0 < ^ ( 1 , and <o* (t9x)$fi(Jl)q(t9 X(l-$) x) 

^, -a .e . in -12 for every x^K (r) and Oc A £ l / (1-#Jr , then the i n t e ­

gral equation (1j possesses exactly one solution in the bal l K ( r ) . 

7# A special case of a kernel k i s obtained i f we take k(t ,s ,u)-: 

- k Q ( t f s ) CpCu)t where ^ i s a convex tp-function and k^SlxSl -^[O**) 

i s a ^-measurable,positive function in SLXS2. . By 4#1, X̂  i s then 

a Banach space. Moreover, ^gCx)= £ wCs) <P[\x($)l) d ^ O ) f where 

wcs)=» £ k 0 ( t , s )d /U( t ) > 0 . Hence X̂  i s an Orlicz space L^(j2y2* u ) 

with weight-function wf and II L i s the norm in IS (Jl} 2T} ̂  . Final ly , 

we have then 

k ^ ( t f u f v ) « | X y | J ko(t fs)ko(s,u)d^UC8) f 

^ J ( t f x ) « IM J f k (t fu)k CufB)(p(|xC8)l) d^uJdMCs; , 

Let us check the assumptions in case of the equation 

(9) x(t) » 96 y tts/x(8)|de + xQ(t) , 0 v< t ^ 1. 

Then lp(u)=*ju| and ° 

t s for O ^ s ^ t 2 

t wCs)» 2 °^ * s ) • 
for t < » $ 1 

£ 1 
<o(t fx)- yts |xCs)|ds f < J > 8 W - | J a ( l - s 2 ) |x (s) |ds , 

0 o 
k*(tfufv)=- -1 | M t u ( t 3 - u3)[v) for 0 £ u ^ t f k^(t,u fv)»o for 

^oJ(t fx)» i |M 5 t s ( t 3 - s3) lx(s) |ds # 

0 
The inequality q^(tfx) £ <o ( t f A (1- #) x) i s sa t i s f i ed for 0 < T ^ < T 

and a l l X > 0 . The inequality (8) i s sa t i s f i ed , i f only 
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1 t v ( t 3 - v3) £ — k o ( t f v ) f i . e . for \*[ £ 3oC . Hencef by Theorem 

6 . 1 , the equation (9) has exactly one solution i n K (rj f i f 

II x L S # r f O < $ < | and 0 </a£|<: 1. 
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