Toposym 4-B

Julian Musielak
An application of modular spaces to integral equations

In: Josef Novak (ed.): General topology and its relations to modern analysis and algebra IV,
Proceedings of the fourth Prague topological symposium, 1976, Part B: Contributed Papers. Society
of Czechoslovak Mathematicians and Physicist, Praha, 1977. pp. 311--318.

Persistent URL: http://dml.cz/dmlcz/700604

Terms of use:

© Society of Czechoslovak Mathematicians and Physicist, 1977

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/700604
http://project.dml.cz

AN APPLICATION OF NMODULAR SPACES
TO INTEGRAL EQUATIONS
Jo MUSIELAK

Poznai

1. Tet (2,5 ,4) be a measure space, p finite, and let % ve
the space of real-velued, J -measurable functions on (1 with equality
m-a.e. Iet a function ki 02x Qx[00)5[0) (called in the sequel
the kermel ) be measurable in 2x (0 x[)c0) , k(t,s,u) continvous and
convex as a function of u ¢ [0,00) for all(t,s)e.QxQ , k(t,s,u)=0
iff u = 0, The following integral equation may be considered :

(1) x(t)= % 5 k(tys, Ix(8)])due)+ x, (%)
Q

Now, one investigates usually solutions of this equation belonging to
8 fixed function space, as P (.Q,Z,Iu,) or the space of continuous
functions C(Q) in case XL is a compact topological space. The aim of
the results presented here is toc consider the solutions of the above
equation as elements of a certain space x?a which depends on the ker-
nel k. The treatment may be generalized, namely, one may observe that
the integral at the right-hand side ig a moduler, as considered in the
theory of modular spaces., The genersl theory of modular spaces depen-
ding on a parameter, as needed here, was presented at the Third Pragus
Topological Symposium 1971 [4] by A.Waszak and myself, We shall adopt
here the notation introduced in [4]. The investigation of modmlar
equations is dus to T.M. Jedryks end myselr ([11,[2]).

2, Let @1 Qx%X-> (0,00] be a femily of convex modulars on
X, i.e, Q(t:x) 3 0, Q(t,x)= 0 p-s.e. implies x =0, @(t,~x)=
= Q (tsx), o (4 Xx+(Y) < « Q&yx)+ pgt,y) for 4,350, a+p=1,
and g(t,x) is J -measurable in the variable te Q2 for all xeX .
We denote by X the set of all xe¢ X such that e, Ax%.0 as
A—=>0 pm-s.e. in ) and we restrict € to the product a2X X,
Then q:s(x)s é‘zg(t,x)dp/. is 2 modular in X and

X%:{xz xeX, ¢ ,(3x)>0 as X 03
is the modular space generated by means of the modular Cg* It follows

from the definition of IC that an element xc¢ X belongs to Iq ire
5 s
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there exists a number >0 such that 90‘(,\°x)<oo . The space
x% is a normed space with norm

Nz, = inf fu>0: @ (x/u) <13,

Now, let I: QXX - [-w,00] be & functional such that ©t,x)=
=|I (,x)| satisfies all the above assumptions. Our purpose is to inve-
stigate the equations

x(t)= % I (t,x) and x(t) = % I(t,x)+ x (%), -a.e.,

where % # O is a given number and x, is a given fixed element of Xg o
4
We consider operators A and B defined by

A@)(t)=4 I(%,x) and (B@)E)= %I (t,x)+ x, (t).

Solutions of the above equations are fixed point of operators A and B,
respectively, We are going to find sufficient conditions in order
that A and B be contraction operators in 164 or in the ball

Ko, (T)= {xs xeX, , ij|¢6s:'}.
This will make possible, in case when x% is complete, to formulate
theorems on existence and uniqueness of the solution of the above
equations.

3. We give now propositions concermning operators A and B in the
genersal case.

Proposition 3.1.(8) I'ft for every x el(g,6 and every A1 >0 the-
re exist numbers C>0 and A,>0 such that

(2) © (¢ 258 (-»x)) € C e (t, )1x) pm-e.e. in 2,
then both A and B map Xg,'s into itself,
(®)Let 0drc¢eco 4, OCR{ oo . 1If for every xeX
X\ such that 0 ¢ 2. < 1/R there holds the inequality
3) 0t g (-x) € @ (b A2 x) Mes.e.dn Q,
then A maps K (r) in xcﬁ(n). 1f, moreover, R = (1 = 9°)xr, where
0<nA®<1, and "xo Mebsﬁr, then B maps Kca(r) into itself.
Proof. (a) Integrating the inequality (2) over (1 we obtain
-1
Qe stk g, (2,00 ,x) <C eg (%)
Hence xex% implies A (x)eX

N end every

§

s °
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(v) Integrating the inequality (3) over 2 we get Q. (AA(x)) €
< @ (ABT” '), Taiing A= 1/R we obtain e,Ax/R) < ©4(3/T)s Thus,
T €K (x) implies A(x)€K, CR) Now, if R =(1 =8)r, then

HB(:)IIQSIIL(x)“e"-bllxoﬂ%\ (1 =9+ Jr=xr ,
i.e. B maps Kg,ﬁ(_r),into itself.

Propogition 3,2,(a) Let @ satisfy the condition 3.1(b) with
R = r. Moreover, let us suppose that for every € > O there exists

a number § >0 such that for every M > 0 and all x,y€ Kg (r)
A
there holds the inequality

) 5'4’(‘ 1C .x)- I( K2 )d,w 5&@(“%%)%-

Then A maps qu(r) into itself, continuwsusly. This remains true for
r =00 , where Kg’ (o0)= X 0y *

(b) Tet lixgll, <49r, 0<¢ #<1, and let Q satisfy the condition
3.1(b)with R =(1 = )r. Moreover, let us suppose that for every ¢ >0
there exists a number 6>0 such that for every /rpo and for all
x,y€ K%(r) there holds the inequality(4). Then B maps K&(r) into
itself, continuously. This remains trus for r m=oo , where Kg 6(oo) =X

Proposition 3.3,(a) Let e satisfy the condition 3.1./p)with
R = r, Moreover, let us suppose that there exists a number o >0
such that for every M >0 and all x,y€ Ks,ﬁ(r) there holds the ine-
quality

(5) S@ %, "_M'ﬁ")dlw S@(t'

e ®

'—E-ﬁll')d!‘h.
Then [|A(X) = A(y) ”g,, ®lx =yllg, for all x,yéK ¢, &)+ This Temains &lso
truse for r =00 « If 0L & {1, A is a contraction operator in Kgs(r).
(b) Let |x, uqsﬂ-r. 0< <1, and let Q satisfy the condition
3.1(b)with R =(1 - $)r. Moreover, let us suppose that there exists
a number o >0 such that for every >0 and all x,yexqs(r) there
holds the inequality(5). Then [|B(x)- B(g)le, < o lix - ¥ll, for all
x,yexes(,r). This remains true also in cas¢ r=oc0 ,If O ¢ o<1,
then B is a contraction operator in K%(r) .

We limit ourselves to the proof of 3.3(a). Indeed, we have
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(4c@) - Al = lsel-1n2 {n>o0r Se(*u 1""’;1”'-” Japes1} <

< 1%/ int { m>0s Sg(t. M)dlw N 1} =[x - yllg‘-

4, In order to i1pply the above considerations to the integral
equation (1), we take

(6) I(t,x)= ilk@,a, x@1)ap(s)e

Under the assumptions on k formulated in 1., Q(t,x)a I1(t,x)satisties
the assumptions from 2. Hence we may apply the Propositions from 3,
However, in order to make use of the Banach fixed-point theorem, we must
know that the respective modular space xg is complete in the norm |l “§
The following theorem is true (see[1]):

Theorem 4,3, If for every u>0 there holds the inequality

§ x@,8u)apt) > o0

for M-a.e. se O, the;lathe space xes with norm i “§"a is a Banach
space.

Proof. Special case of this theorem when k(t,s,u) is indepen-
dent of t was given in [3], 2.31. The present proof (see also [11)
rws similar lines. Pirst, we observe that if a function f£: Q. —>[0,=)
is 2 -measurable end positive pi-a.e., then the measure M is
V -~ebsolutely continuous, where (A)= Sf(a)d M(8) . Thus, teking
€>0 and £(8)= S' k(t,s,€) au t), thaze exists a number M >0
such that o(L)<fQ y A€ Z , imply M@A)< E o Let (51) be a
Cauchy sequence in xgs end let us take any O >0, then

@.(%@n - xm)) -0 as mn-> oco ,

There exists an N pguch that Qs("("n - x ))<m for m,n>N.
Denoting B, , =fse Q1 Nx (8- x,(8)|l5 ¢ § , we obtain

(Bm'n\z S{Sk(‘t,a,e) dr,x(_t)}dy,(a) < @s(’k (x, - xmn<”l .
. la

end so /“(Bm:n)<£ for m,n)N. Consequently, (Ax,) tends to a
fwction x € ¥ in fju-measure in £ . It is easily observed that x,
is of the form x, = Ax, Standard application of Fatou lemma shows
that @ (A(x, - x))>0as n>oo , 1.6 |x, - X "S’s-’ 0as nsco.
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5. Now, we shall adopt the assumptions of Fropositions 3.1-3.3

to the case of the modular Q(t,x): I(t,x)defined by(6), Operators
A and B are then defined as in 2, Let us write

A _

Ky (6,u,v)= -S;zkl_t,s, Ak(s,u,v)] A (),
2

61(15,1) = .S-;k%\(ttsﬁ (bs (B)I)d!‘{(ﬂ).

Proposition 5.1.(8) et O(r< oo , OCR<o® and let us suppo-

se that for evexry xX€K,(r) end every A such that 0< A < 1/R
there holds the inequality

A
e, (t,x) Sﬁ(ﬂ)@@, ).% x) pw~a.e. in .,
Then A maps Ko (@) in K&(R) for every % such that  0<fee|< 1/u(R),

(b) Let O<r< oo end fIxl$r, where 0< 3 <1, It for every

X €K () end every A such thet 0 < X £ 1/ (1-3)r  there holds
the inequality

Q’{(t,x) < M(-Q.)Q(t, A1 -9)x) p-e-e. in Q,

then B maps Kgs(r) into itself for every ¥ suchthat 0<l’o€1<1/m-e).

Proof, It is sufficient to pro¥we (a), but applying Jensen
inequality, we get

Q(t' M‘"Q(',I))S TL.(?JT) ;{gn_k(t’s’ )‘k("u’ lx(}l)])]d{d(ﬁ)}d (\4(.) =

= TZ-E Qi(t,x) s q(t,k% x) ,
end the assumptions of 3.1(b) are satisfied.
Proposition 5.2.(a) Let 0 < lae|<1/jua) and let © satisfy
the condition from 5.1.(a) with R = r. Moreover, let us suppose that

for every (3 > O there exists Y >0 such that for all Xx,y¢€ K&(r)
there holds the inequality

; ;k‘b'u, k(u,v’ x(v -k(u-’v' y(v) er(U) d‘u,(,u S

< [ X =yl e, .
< S;Qk Ltﬂl, l/ ]dM()).) for M-2.e te_N

Then A maps Kgs(r) into itself, continuously.
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(b) Let O <ol <1/U(2) end let g satisfy the condition
from 5.1.(b). Moreover, let us suppose thet for every (3> O there
exists y > O such that for aell x,ye qu(r} there holds the inequa-
lity (7) for pu-8.e. £ €51 , Then B maps K&(r) into itself, continu-
ously.

Proof, We may limit ourselves to(a). Applying Jensen inequality
and inequality(7), we obtain easily

-§)\¢ (t, I_C_;_x.%l-_gl_(.‘_d.)_) d!l.(,(_t) <

Si{;‘k(t.u. 'ﬂ‘%ﬁ)d“(m} p (k)= S‘qo(t, Mfrza d(w(t),

for y -a.e. $652 , 1.e. the 1nequa11ty(4).

In a similar manner, the following statement may be proved
applying 3.3.

Proposition 5.3, (a) Let 0 <l%¢/< 1/u() and let © satisfy the
condition from 5.1.(a) with R = r. Moreover, let us suppose there
exists a number o >0 such that for every x,yers(r) and for all

M 7 O there holds the inequality

(®) .S;Z{ M(lQ-) :S(;k[t,u, ‘&%‘1‘) [k (u,v, 1x(V)I) = k(u,v, |y(v)l)ﬂd/¢(,v)}d#@)\<
8

S};k[t,u, mmllx(‘n)- vy ]d(u(u) for fo-e.e. ten .

Then {[A(x)- A(y)lj975 £ fjx - y”&. for all x,y GK%(;‘) «If 0K« 1,
then A is a contraction operator in Ks,s(r).

(b) Let o< ¥l < 1/{44L.O.) and let @ satisfy the condition from
5.1s(b). Moreover, let us suppose there exists a number o >0 such
that for every x,ye¢ Kfs(r) and for all >0 there holds the inequa~
lity (8). Then ||B(x) - B(y)nq,5 S dlx - yllﬁfor all x,yel(g,s(r). If
0< o ¢ 1, then B is a contraction operator in Kg,’(r) .

6. Applying Banach fixed-point theorem, the following result is
deduced easily from Theorem 4,1 and Proposition 5.3.

Theorem 6.1, Let the kermel k satisfy the assumptions foemula-
ted in 1, Moreover, let us suppose that for every u )0, the inequality
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qu(t,s,u)d(u(t) > 0 holds for p-a.e. s€Q . Let 0 <pel<t/u(=x),
0<r <oe . Finally, we suppose that there exists a number of, O<Ca<1,
such that for every x,ye K(vs(r) and all 12 > 0 there holds the ine-
quality (8) for Mm~-a.e. t€Q o Then

a) if a(t,x)g £2) t,AXx) y-8.6e. in 2 for every x€K,(r
and (gl X S%}r, th_en/ut(he iﬁtigral e)q/{:xation (1) with x (t) =0 s )
possesses only tnviai solution in the ball Kg,s(r),

(b) 1t onllgs AT, 0< G, amd @ (4 x)SUEDQ(s A (- x)
pm-a.e. in L2 for every x€K, () end O< A £ 1/(1-8)r, then the inte-
gral equation (1) possesses exzctly one solution in the ball Kﬁ (x) .

7. A special case of a kernel k is obtained if we take k(t,s,u):=
= ko(t,s) @(v), where Y is a convex (f~function and kéQX_Q —>[0loo)
is a S -measursble,positive function in QX Q . By 4.1, X ¢, is then
a Banach space, Moreover, gds(,x)- w(s) (.P(]x(p)l) du(s), where
w(s)= f k,(t,8)dm(t) > o. Hence xg,s is an Orlicz space L(f(_(lli'”u,)
with welght-functlon w, and |l lgy is the norm in LY (.Q z, /(4) Pinally,

we have then
x
kg (tyu,v)= |2 v :glko(t,s)ko(s,u)dfuu) R

q?(t,x)r- l%légko(t.u)ko(u.s)v(lxcs)') dpm(udm(s).
Let us check the assumptions in case of the equation
(9) x(t) = eefttslx(s)lds +x (%), 0¢tg 1.
Then ((u)=|u| and 0

ts for O0¢s¢t 1 2
k, (,8)= y we=38( -8),
0O for t<mg1l

-

t 1
Q(t,x)= § ta|x(g)ias , Q)= 3 S s(1 - o2 )1z @)ae ,
0

Q
k) (£,4,v) = l I su(t® - W) iv] for 0<ugs, K 1(8:9s¥)=0 for
t <us1l

Q?(t,x)z % [ Al S ts(t3 - sB)Ix(s)!da o
0

A
The inequality Q1(t,x) < @(t, A (1= 3 x) is satisfied for oa?(%
and all A > 0. The inequality (8) is satisfied, if only
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&
-;- tv(t3 -v) ¢ T ko(t,v), i.e. for 1%|< 3¢ . Hence, by Theorem
6.1, the equation (9) has exactly one solution in 1“:(J (x), it
S

2
I(xollqssﬁr, 0< < 5 ed 0< i< 1.

References

[1] T.M, Jedryka, J. Musielak, On a modular equation I ,
Punct. Approximatio Comment.Miath, 3 (1976), 101 - 111

[2) T.i, Jgdryka, J. biusielak, On a moduler equation II ,
Relationes de Mathematica 1 (1977 ), in print

[31 J. Musielak, W, Orlicz, On modular speces, Studia Math., 18 (1959),
49 - 65

[4] Jo WU3L ity A, Vaszak, A contributicr 5o “he thaury of modular

spaces, Proc. of the Third Prague Topological Symposium 1971,
Prague 1971, 315 - 319 .



		webmaster@dml.cz
	2012-09-21T09:04:45+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




