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ON A NUMERICAL MODEL OF PHASE TRANSFORMATION
IN SUBSTITUTIONAL ALLOYS

JIŘÍ VALA∗

Abstract. A new model for the diffusive phase transformation with a finite number r of sub-
stitutional components is based on the application of the Onsager thermodynamic extremal principle;
it assumes the interface of finite thickness with finite mobility and solute segregation and drag in the
migrating interface. The mathematical analysis leads to a system of PDEs of evolution of the first
order (driven by chemical potentials of particular components) for unknown molar fractions c1, . . . , cr

(c1 + . . . + cr = 1) with nonlinear coefficients, including (as an additional variable) an interface displace-
ment rate v(c1, . . . , cr), evaluated from a nonlocal algebraic equation. Especially in the 1D stationary
case (where v is independent of time) such system degenerates to a system of ODEs; for this case reli-
able material characteristics at least for a Fe-rich Fe-Cr-Ni system (r = 3) from the Montainuniverität
Leoben (Austria) are available. The software for transformation and differentiation of a large set of such
characteristics (as complicated functions of c1, . . . , cr) makes use of MAPLE-supported symbolic manip-
ulations. The simulation software has been written in MATLAB; some predicted results can be identified
with those obtained by laboratory measurements and practical observations.

Key words. Phase transformation, diffusion, interface kinetics, thermodynamic extremal principles,
special systems of ODEs, PDEs of evolution, finite difference method.

AMS subject classifications. 74N25

1. Introduction. Phase transformations represent a decisive mechanism in refine-
ment of microstructure in many materials leading to dramatic enhancement of their me-
chanical properties. Numerical modelling seems to be not only an important tool in
understanding of processes occurring during the phase transformation, simulation based
on the reliable models can help in design of new advanced materials or provide estimations
of the life time of components.

To model diffusional phase transformation, it is necessary to solve the coupled prob-
lem of diffusion and interface migration; the calculation scale is typically much lesser
than 1 µm. Practically all models assume a sharp interface with ortho-equilibrium or
para-equilibrium contact conditions; for the review (with many references) see [1]. A
more general set of contact conditions at a sharp interface with some finite mobility is
studied just in [1]; for the case of substitutional alloys [4] demonstrates how the jumps of
chemical potentials can be derived from the Onsager thermodynamic extremal principle
of maximum dissipation. The contact conditions influence the kinetics of phase transfor-
mation dramatically, thus they are topics of theoretical works on phase transformation
(cf. [2]).

We shall consider a closed one-dimensional system with a finite number r ∈ {2, 3, 4, . . .}
of substitutional components with no sources and sinks of vacancies. We can admit r = 2,
although for this case a more simple approach is available (with only one resulting non-
linear ODE or PDE of evolution); in our numerical application we shall need r = 3 for
certain Fe-rich Fe-Cr-Ni system (some results for a similar system with a fixed finite in-
terface thickness have been presented in [5]). Two phases, α and γ, will be separated
by a migrating incoherent interface; the α → γ transformation will be active. The local

∗Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering, Brno University
of Technology, Žižkova 17, 602 00 Brno, Czech Republic (Vala.J@fce.vutbr.cz).519



520 J. Vala

chemical composition is described by molar fractions c = (c1, . . . , cr) for particular com-
ponents: cr = 1 − c1 − . . . − cr−1. The chemical potentials µ1, . . . , µr depend both on
c1, . . . , cr and on the coordinate x directly (for the details see below). The interface of the
constant thickness is assumed to move from the left to the right. No deformation at any
point due to diffusion or phase transformation, no sources or sinks of vacancies and no
stresses in the system (consequently: no mechanical driving force for a coupled process
of bulk diffusion and interface migration) will be included into our model.

The following symbols will be used frequently: i for a component index (i ∈ {1, . . . , r}),
ci for a component concentration, ji for a component diffusional flux, x for a coordinate
in the one-dimensional Euclidean space (x ∈ Ω = 〈0,H〉, H is a positive real constant),
t for a time coordinate (t ∈ 〈0,∞)). The material characteristics are three diffusional
coefficients Di(x), one interface mobility M and three chemical potentials µi(c, x). In
the following considerations also the diffusional factor Ai = ciDi/(RT ) for the constant
R = 8314 JK−1 mol−1 and for certain fixed temperature T will be useful.

Unlike the heuristic difference approach of [3] and [4], our physical analysis will result
in formulation of a boundary value problem for a system of ordinary differential equations,
in general of evolution type, more simple in a stationary case. The numerical analysis of
such system comes out from finite difference techniques for nonlinear problems.

2. Derivation of a model from the Onsager principle. Let us analyze a ma-
terial sample, using a view of size H, whose initial position (for t = 0) is Ω = 〈0,H〉,
containing an interface of finite constant thickness h, whose initial position is I = 〈xR, xL〉
(h = xR − xL, 0 ≤ xR < xL ≤ H, h � H in practice). We shall assume that our view
is moving in time from the right to the left (to set positive orientation of such motion)
together with our interface (position of I inside Ω is still preserved); a rate v of such
motion depends on t only (not on x). A local coordinate x̃, connected with our view, can
be calculated from x easily, applying the substitution x̃(t) = x− u(t) where

u(t) =
∫ t

0

v(τ) dτ

and therefore also ˙̃x(t) = −v(t); ψ̇ denotes a (total) time derivative of a variable ψ
everywhere, similarly ψ′ will (later) denote a derivative with respect to a variable x.
Consequently any integral of type

Ψ(t) =
∫ H−u(t)

−u(t)

g(x, t) dx̃

for an arbitrary integrable function g (related to Ω in any time t) can be simplified as

Ψ(t) =
∫ H

0

g(x, t) dx .

In the following considerations the fact that variables are dependent on t or x will not
be emphasized explicitly (if no risk of misunderstanding exists). An index i from the set
{1, . . . , r} will refer to an arbitrary component of our three-component system, an index
ρ from the set {α, β, γ} will refer to its arbitrary phase.

The total Gibbs energy of the system is given by

G =
1
Θ

∫ H

0

ciµi dx
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Θ here is a number of mols in a volume unit. Let us assume that all chemical potentials
µi are functions of x and c = (c1, . . . , cr), expressed in form

µi(x, c) =
∑

σ∈{α,β,γ}

wσ(x)µσ
i (c)

on Ω; wα, wβ and wγ here are some weight functions (if 0 ≤ x ≤ H then wα(x) ≥ 0,
wβ(x) ≥ 0, wγ(x) ≥ 0, wα(x) + wβ(x) + wγ(x) = 1) and µα

i , µβ
i and µγ

i are functions of
c only (not of x or t directly).

The conservation of mass for every component ci is guaranteed by the Fick law
ċi + j′i/Θ = 0. Thus, the differentiation of G in time gives

Ġ =
1
Θ

r∑
k=1

∫ H

0

ċkµk dx+
1
Θ

r∑
k=1

∫ H

0

ckµ̇k dx

= −
r∑

k=1

∫ H

0

j′kµk dx+
1
Θ

r∑
k=1

∫ H

0

ckµ̇k dx

and with respect (in any time) to boundary conditions ji(0, t) = ji(H, t) = 0 (no diffusion
boundary fluxes for our view are allowed)

Ġ =
1
Θ

r∑
k=1

∫ H

0

jkµ
′
k dx+

1
Θ

r∑
k=1

∫ H

0

ckµ̇k dx .

But we have also

µ̇i =
∑

σ∈{α,β,γ}

(
µ̇σ

i wσ + µσ
i w

′
σ

˙̃x
)

=
∑

σ∈{α,β,γ}

µ̇σ
i wσ − v

∑
σ∈{α,β,γ}

µσ
i w

′
σ

and the well-known Gibbs-Duhem condition for any phase on Ω

r∑
k=1

ckµ̇
ρ
k = 0

gives

r∑
k=1

ckµ̇k = −v
r∑

k=1

∑
σ∈{α,β,γ}

µσ
kw

′
σ

and consequently

Ġ =
r∑

k=1

∫ H

0

jkµ
′
k dx− v

Θ

r∑
k=1

∑
σ∈{α,β,γ}

∫ H

0

ckµ
σ
kw

′
σ dx .

Since w′ρ = 0 outside I (wα = 1 for x < xL, wγ = 1 for x > xR, wρ = 0 otherwise),
we can write finally

Ġ =
r∑

k=1

∫ H

0

jkµ
′
k dx− v

Θ

r∑
k=1

∑
σ∈{α,β,γ}

∫ xR

xL

ckµ
σ
kw

′
σ dx .
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The rate of the energy dissipation due to bulk diffusion and interface migration can
be evaluated as

Q =
1
2

r∑
k=1

∫ H

0

(jk/Ak − 2λ)jk dx+
1
2
v2/M .

We shall see that the Lagrange multiplier λ forces the natural condition of zero sum
of diffusional fluxes.

By the Onsager thermodynamic extremal principle the kinetics of the system corre-
sponds to the condition of zero variation of Ġ + Q with respect to all variables. For all
admissible j̃1, j̃2, j̃3, ṽ and λ̃ we have variations

D(Ġ+Q)(j̃1, j̃2, j̃3) =
r∑

k=1

∫ H

0

j̃kµ
′
k dx+

r∑
k=1

∫ H

0

(jk j̃k/Ak) dx = 0 ,

D(Ġ+Q)(ṽ) = − ṽ

Θ

r∑
k=1

∑
σ∈{α,β,γ}

∫ xR

xL

ckµ
σ
kw

′
σ dx+ ṽv/M = 0 ,

DQ(λ̃) = −
r∑

k=1

∫ H

0

jkλ̃ = 0 .

Thus, we receive (for every x ∈ Ω)

µ′i + ji/Ai + λ = 0 ,
r∑

k=1

jk = 0

and moreover

v =
M

Θ

r∑
k=1

∑
σ∈{α,β,γ}

∫ xR

xL

ckµ
s
kw

′
σ dx .

Let us mention some more consequences of the Gibbs-Duhem conditions. We have

r∑
k=1

ckµ̇k =
r∑

k=1

∑
σ∈{α,β,γ}

ckµ̇
s
kwσ = 0

and

v
r∑

k=1

ckµ
ρ
k
′ = −

r∑
k=1

ckµ̇
ρ
k = 0

on Ω. Moreover,

v
r∑

k=1

ckµ
′
k = v

r∑
k=1

∑
σ∈{α,β,γ}

ckµ
σ
k
′ws + v

r∑
k=1

∑
σ∈{α,β,γ}

ckµ
s
kw

′
σ = v

r∑
k=1

∑
σ∈{α,β,γ}

ckµ
σ
kw

′
σ

on Ω; in particular,

v
r∑

k=1

ckµ
′
k = 0
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outside I. The same is true even on I in case v = 0; otherwise we obtain an alternative
explicit formula for the evaluation of v,

v =
M

Θ

r∑
k=1

∫ xR

xL

ckµ
′
k dx .

(Nevertheless, for practical calculations its original form seems to be more useful.)
The variable λ occurs only in the first equation and can be eliminated: multiplying

this equation by Ai, we obtain λAi = −ji − Aiµ
′
i. The sum of all such equations with

respect to the second equation gives

λ
r∑

k=1

Ak = −
r∑

k=1

Akµ
′
k ;

this results

λ = −
r∑

k=1

Akµ
′
k/

r∑
l=1

Al

and consequently

ji = −Aiµ
′
i −Aiλ = Ai(−µ′i +

r∑
k=1

Akµ
′
k/

r∑
l=1

Al) = −Ai

r∑
k=1

Ak(µ′i − µ′k)/
r∑

l=1

Al .

Let us now make some remarks to limit cases of practical interest. If ji is bounded
(this is guaranteed e. g. by the assumption of boundedness of ∂ci/∂t – this fact can be
verified using the integration of the original formula for ji from the Fick law by x) then,
integrating the relation µ′i = −λ− ji/Ai from xL to xR with the result

µi(xR)− µi(xL) = −
∫ xR

xL

λ dx−
∫ xR

xL

(ji/Ai) dx ,

we can conclude that, substituting all Ai, supposed to have positive lower bounds (which
forces non-zero concentrations), by Ai/ε with a sequence of decreasing positive ε, the
limit passage ε→ 0 guarantees

lim
ε→0

(µi(xR)− µi(xL)) = −
∫ xR

xL

λ dx

because

lim
ε→0

∣∣∣∣∫ xR

xL

(εji/Ai) dx
∣∣∣∣ ≤ lim

ε→0

∫ xR

xL

|εji/Ai| dx ≤ κh lim
ε→0

ε = 0

with some positive constant κ. The integral of λ from xL to xR is finite (non-zero in
general), but the same for every i; in the particular case this property can be seen from
the graph, presented in [5]. However, the similar conclusion could be done also for the
ideal model of very thin interface with h→ 0 because

lim
h→0

∣∣∣∣∫ xR

xL

(ji/Ai) dx
∣∣∣∣ ≤ lim

h→0

∫ xR

xL

|ji/Ai| dx ≤ κ lim
h→0

h = 0

(cf. Fig. 4.3).
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3. A stationary case. Most experiments with α → γ transformations verify the
hypothesis that (after some time) the process obtains steady-state properties – the quan-
tities v and c become constant in time. The diffusional fluxes ji on I are then able to be
related to the concentrations ci as ji = v(ci − c×i ) where c×i are some prescribed concen-
trations in the phase γ far from the interface; the integral expression for the evaluation
of v stays unchanged. Especially in the phase α no concentration profiles exist – the
chemical composition is given by c×i .

Let us introduce the decomposition µρ
i (c) = µρ

0i + RT ln ci + ϕρ
i (c) where µρ

0i and
RT are constants and ϕρ

i are functions of c (not dominant, but rather complicated in
practice). Then

µ′i =
∑

σ∈{α,β,γ}

(
w′σµ

σ
i + wσµ

σ
i
′)

obtains the form

µ′i = µ̂i +RT (c′i/ci) +
r∑

l=1

ϕ̂ilc
′
l ,

applying the brief notation

µ̂i =
∑

σ∈{α,β,γ}

w′σ

(
µσ

0i +
r∑

l=1

ϕσ
i,lc

′
l

)
, ϕ̂σ

il =
∑

σ∈{α,β,γ}

wσ

r∑
l=1

ϕi,l

where ϕi,l means ∂ϕi/∂cl, etc.
By means of Di (instead of Ai) we are able to express diffusional fluxes as

ji = −ciDi/(RT )

(
r∑

k=1

ckDk(µ′i − µ′k)

)
/

(
r∑

l=1

clDl

)
.

The notation ζi = Di/D, η =
∑r

l=1 ζlcl with some chosen standard value of a diffu-
sional coefficient D enables us to simplify this formula into the form

ji = −ciζiD/(RT )
r∑

k=1

(ckζk/η)(µ′i − µ′k) .

Inserting above calculated µ′i (and dividing by −ζiD), we obtain

−ji/(ζiD) = ci/(RT )

(
µ̂i +RT (c′i/ci) +

r∑
l=1

ϕ̂ilc
′
l

)

− ci/(RT )
r∑

k=1

(
(ckζk/η)µ̂k +RT (ckζk/η)(c′k/ck) + (ckζk/η)

r∑
l=1

ϕ̂klc
′
l

)

and with help of the some additional notation µi = µ̂i −
∑r

k=1(ckζk/η)µ̂k, ϕik = ϕ̂ik −∑r
l=1(clζl/η)ϕ̂lk finally

−ji/(ζiD) = c′i − ci/η + ciµi/(RT ) + ci

r∑
k=1

(ϕik/RT )c′k .
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But we also know that

−ji/(ζiD) + v(ci − c×i )/(ζiD) = 0 ;

this results

c′i + ci

r∑
k=1

(−ζk/η + ϕik/(RT )) c′k + (µi/(RT ) + v/(ζiD)) ci = vc×i /(ζiD) .

Evidently, c1 + . . .+cr = 1, and thus c′r = −c′1− . . .−c′r−1. This enables us to remove
the last r-th equation and to express cr (including its derivative) in first two equations
by means of remaining concentrations. In this way for i < r we receive

c′i +
2∑

k=1

Bikc
′
k +Kici = Fi

where Bik = ci(ζ3−ζk)/η+(ϕik−ϕi3)/(RT )), Ki = µi/(RT )+v/(ζiD), Fi = vc×i /(ζiD).
With help of the notation this system of equations can be rewritten in a matrix form
(I + B)c̄′ + Kc̄ = F where I is an identity matrix of order r − 1, B is a square matrix of
order r−1 compound from elements B11, . . .B1 r−1, . . . , Br−1 1, Br−1 r−1, K is a diagonal
square matrix compound from diagonal elements K1, . . .Kr−1 and F is a column vectors
of size r − 1 compound from elements F1, . . .Fr−1.

4. Numerical simulation. In all cases of practical interest (even in a very simpli-
fied case of all constant µ0i and zero φi) the exact solution of the derived system is not
known. The analysis of existence and uniqueness of a solution is not trivial; the crucial
difficulty is that reasonable bounds for very complicated functions φi and their derivatives
are not available. Such deterministic functions, whose formulations come from extensive
theoretical and experimental research, reflect a lot of physical phenomena (as ferromag-
netism), not discussed in this paper, and their validity, guaranteed with high precision
e. g. for c1, c2 � 1 and c3 close to 1 for the above mentioned Fe-rich systems, is not
allowed to be extended to quite other (but realistic) systems. However, for simulations of
phase transformations some robust numerical scheme is needed. In addition, such scheme
must respect that all diffusion coefficients Di(x) change their values on I very rapidly.

The Crank-Nicholson scheme on I gives(
I + B̄s +

∆
2

K̄s

)
c̄s =

(
I + B̄s − ∆

2
K̄s

)
c̄s−1 + F̄ s ;

here ∆ means a calculation step and ψs is briefly used instead of ψ(s∆) for any function
ψ(x) everywhere on Ω and s ∈ {1, . . .m}, m = h/∆ (therefore c′((s + 1/2)∆) ≈ (cs −
cs−1)/∆). At the start of all calculations both matrices B̄s = (Bs + Bs−1)/2, K̄s =
(Ks + Ks−1)/2 and a vector F̄ s = (F s + F s−1)/2 are set using the assumption that
ci = c×i (no better information is available); this starts an iterative procedure of evaluation
of c̄1, c̄2, . . . , c̄m and also of an integral sum

v =
M∆
Θ

r∑
k=1

∑
σ∈{α,β,γ}

m−1∑
s=1

cskµ
σs
k w′σ(s∆)

where µσs
k denotes the value of µσ

k in cs (we have w′σ(0) = w′σ(m∆) = 0), correction of
B1, . . . ,Bm, of K1, . . . ,Km and of F 1, . . . , Fm, etc.
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Outside I (where H � h) the real distributions of concentrations are typically similar
to (but not exactly identical with) exponential curves: the first additive term in Ki is
equal to zero, the right-hand side of the whole system of ODEs is constant, the (non-
constant) matrix Bs is not far from diagonal (neglecting all terms of type ϕ̂ik), thus the
eigenvalue analysis for (I + B̄s)−1K̄s can be useful to substitute approximate solutions
from the Crank-Nicholson scheme. In more details: in general we can seek for c̃s(x) =
c̃s0 + c̃s1(x) where c̃s0 = (K̄s)−1F s, c̃s1(x) = VsEs(x)κs, x ∈ 〈h+(s−1)∆, h+s∆〉 (∆ is
a calculation step again, although it may differ from ∆ applied on I), Vs is some square
matrix of order r − 1, κs is some column vector of size r − 1, Es(x) is certain diagonal
square matrix of order r − 1 compound from elements Es

i (x) = exp(−λs
i (x − (s − 1)∆))

and λs
i are up to now unknown parameters. Consequently c̃s′(x) = −VsΛs(x)κs where

Λs is a square matrix of order r − 1 compound from above mentioned parameters λs
i .

Let us assume that c̃s1(x) satisfies a system (I + B̄s)c̃s1′(x) = −K̄sc̃s1(x). Then we
have −(I + B̄s)VsΛsEs(x)κs = −K̄sVsEs(x)κs and consequently VsΛsEs(x)κs = (I +
B̄s)−1K̄sVsEs(x)κs; in other words: λs

i are eigenvalues and two columns of Vs are
orthonormal eigenvectors of (I+B̄s)−1K̄s. It is natural to prescribe c̄s−1 = c̃s(h+(s−1)∆)
to calculate κs, following the aim to obtain c̄s = c̃s(h + s∆). ¿From two corresponding
conditions c̄s−1 = c̃s0 + V sκs, c̄s = c̃s0 + V sEs

∆κ
s with a diagonal square matrix Es

∆

consisting of elements Es
∆i = exp(−λs

i ∆) we receive κs = V sT(c̄s−1 − c̃s0) and finally
c̄s = c̃s0 + V sEs

∆V
sT(c̄s−1 − c̃s0). Especially outside I no evaluation of c̃s0 is needed

because c̃s0 = (K̄s)−1F s = c̄× with c̄× = (c×1 , c
×
2 ) and the whole calculation of c̄s

becomes rather cheap.
All our numerical calculations make use of the original software code, runable in each

standard MATLAB environment (with no special requirements to additional toolboxes
or FEMLAB compatibility). Only the automatic code generator of algebraic expressions
for µi evaluation (not described in details here) needs MAPLE-supported symbolic dif-
ferentiation.

Usually the diffusional coefficients Dα
i and Dγ

i for the phases α and γ are known; the
same is true for the diffusive coefficients Dβ

i , corresponding to an ideal liquid state β of
material. However, such diffusive coefficients Dβ

i are correct just in the interface center
xC = (xL + xR)/2. The diffusional coefficients Di inside the interface (xL < x < xR)
have to be interpolated applying the formula

lnDi(x) =
∑

σ∈{α,β,γ}

wσ(x) lnDσ
i ;

weight functions wσ(x) here are cubic Hermite interpolations splines given by their values
wα(xL) = wγ(xR) = 1, wα(xC) = wα(xR) = wγ(xC) = wγ(xL) = 0, wα

′(x) = wγ
′(x) = 0

for all nodes x ∈ {xL, xC , xR} and wβ(x) = 1 − wα(x) − wγ(x) for each x ∈ I. The
formulation of 3 chemical potentials can be done in the similar way: instead of Dσ

i we
know constants µσ

0i (as we have explained in the previous section), functions ln are missing.
As a typical example, let us consider the three-component (r = 3) Fe-rich Fe-Cr-Ni

system with the interface thickness h = H/2 = 5.10−10 m (the value of H must be sup-
plied for the postprocessing) for the temperature T = 1030 K; Θ = 0.0000072 mol m−3.
The values of diffusive coefficients can be transformed from those applied in [4], p. 965:
Dα

3 = 0.00016e−24000/(RT ), Dβ
3 = 0.0003e−155/(RT ), Dγ

3 = 0.00007e−28600/(RT ), all in
m2/s; completed by Dα

1 = 2Dα
3 , Dβ

1 = 2Dβ
3 , Dγ

1 = 5Dγ
3 , Dα

2 = 0.3Dα
3 , Dβ

2 = 0.3Dβ
3 ,

Dγ
2 = 0.5Dγ

3 ; to derive dimensionless factors ζi, we can set D = Dα
3 . Three chemical

potentials in all phases are given by µα
01 = −38061.5, µβ

01 = −25811.1, µγ
01 = −30939.3,

µα
02 = −42880.4, µβ

02 = −40079.5, µγ
02 = −46810.5, µα

03 = −43591.6, µβ
03 = −38310.3,

µγ
03 = −44061.8, all in J/mol; in this case the temperature T = 1030 K has been set a
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priori, as µ0i are rather complicated functions of T . All functions ϕα
i and ϕγ

i are available
for our Fe-Cr-Ni system as the research outputs from the Montainuniverisität Leoben.
Unfortunately, their original calculation formulae are very long (containing more then
1500 FORTRAN program lines) and include a lot of additive terms of power-law types
(. . .) cθi and (. . .) cθi ln ci with θ ∈ {0, 1, . . . , 25}. Moreover, the resarch team in Leoben is
still working on the testing, improvement and generalization of these formulae. Therefore
it was necessary to prepare a special MAPLE- and MATLAB-based software to analyse
such formulae, to decompose them into logical parts and to derive some algorithms for
the (not very expensive) evaluation of ϕi and (using the symbolic differentiation) of ϕi,k.
For an ideal liquid we can suppose ϕβ

i = 0. We shall start with c×1 = 0.001, c×2 = 0.019
and c×3 = 0.98.

Fig. 4.1. Molar fractions and chemical potentials.

For such data the final distributions of concentrations of Cr, Ni and Fe have been
obtained after several iterative steps; the results are evident from Fig. 4.1 where these dis-
tributions in the left column are completed by the distributions of corresponding chemical
potentials µi (evaluated from above mentioned complicated formulae). Fig. 4.2, gener-
ated by automatically restarted calculations for various values of h and T , shows that i)
the increasing h causes that the temperature corresponding to v = 0 is increasing, too,
which corresponds to practical experience, ii) the ad hoc difference model with h → 0
(from [4]) is only a rough approximation of reality in case of some non-negligible finite
thickness h. Fig. 4.3, generated by automatically restarted calculations for 41 values of
h, shows maximal absolute values of differences of chemical potentials (interface jumps)
evaluated for µ(xL) and µ(xR): the upper curve is valid for Cr, the central one for Fe, the
lower one for Ni. These values vanish in practice only for very low thicknesses h (exactly
in the limit case h→ 0).5. A non-stationary case. Although in all numerical experiments we have paid
attention only to a stationary case, let us revise what happens in case that the simplifying
assumption ∂ci/∂t ≈ 0 is not acceptable. Let us remind that a generalized version of a
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Fig. 4.2. Interface velocity v as a function of h and T .

relation between ci and ji from the preceding section is ∂ci/∂t−vc′i+j′i = 0 with ji(0) = 0.
Integrating this equation with respect to x, we obtain Ci − v(ci − c×i ) + ji = 0 with

Ci(x) =
∫ x

0

(∂ci(ξ)/∂t) dξ .

Indeed, neglecting Ci, we come back to our original relation for a stationary case.
We shall try to sketch a possible way of generalization of our stationary calculations.

In a stationary case we have verified that ωi = −ji/(ζiD) is a (rather complicated)
function of c and c′, independent of D (but still dependent on dimensionless factors
ζ1, . . . , ζr−1); then we have studied in details a relation of type ωi + Lici = Lic

×
i with

Li = v/(ζiD) (later we shall need also a diagonal square matrix L compound from L1

and L2). This relation can be now generalized easily: we obtain

ωi + Li∂Ci/∂t+ Lici = Lic
×
i .

The Crank-Nicholson scheme in time generates

(ωq
i + ωq−1

i )/2 + Li(C
q
i − Cq−1

i )/τ + Li(c
q
i + cq−1

i )/2 = Lic
×
i ;

here τ is a constant time step, upper indices q correspond to t = qτ similarly to indices s
corresponding to x = s∆, etc. The following considerations can be done for an arbitrary
integer q.

For the full discretization (both in x and in t) we must construct an integral sum
on Ω

Cqs
i =

∆
2

(
cq0i + 2

s−1∑
p=1

cqp
i + cqs

i

)
;
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Fig. 4.3. Interface potential jumps for Cr, Ni, Fe as functions of h.

it is natural to set cq0i = c×i . Let us try to come to formally analogous results to those
derived in a stationary case. We shall evidently need some B̄qs = (Bqs + Bq s−1 +
Bq−1 s + Bq−1 s−1)/4, K̄qs = (Kqs + Kq s−1 + Kq−1 s + Bq−1 s−1)/4 and F̄qs = (Fqs +
Fq s−1 + Fq−1 s + Fq−1 s−1)/4. Let us notice that an upper index q is necessary even
for F because it depends on vq that must be evaluated in any time qτ ; the same is true
for L: L̄qs = (Lqs + Lq s−1 + Lq−1 s + Lq−1 s−1)/4. Applying the same approach as in a
stationary case (and omitting technical details), we receive

1
2

(
I + B̄qs +

∆
2

K̄qs

)
(c̄qs + c̄q−1 s) +

∆
2τ

L̄qs(c̄qs − c̄q−1 s) +
∆
τ

L̄qs
s−1∑
p=1

(c̄qp − c̄q−1 p)

=
1
2

(
I + B̄qs − ∆

2
K̄qs

)
(c̄q s−1 + c̄q−1 s−1) + F̄ qs .

This can be (multiplied by 2) rearranged as(
I + B̄qs +

∆
2

K̄qs +
∆
τ

L̄qs

)
c̄qs =

(
I + B̄qs − ∆

2
K̄qs

)
c̄q s−1 + F̃ qs

where

F̃ qs = F̄ qs −
(
I + B̄qs +

∆
2

K̄qs − ∆
τ

L̄qs

)
c̄q−1 s

+
(
I + B̄qs +

∆
2

K̄qs

)
c̄q−1 s−1 − ∆

τ
L̄qs

s−1∑
p=1

(c̄qp − c̄q−1 p) .

Clearly some initial status c(x) for t = 0 and every x ∈ Ω (here practically all c0s,
s ∈ {1, . . . ,m}) must be given a priori. We can observe (understanding B̄0s, K̄0s and
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F̄ 0s for c0s in the same sense as B̄qs, K̄qs and F̄ qs for cqs) that if(
I + B̄0s +

∆
2

K̄0s

)
c̄0s =

(
I + B̄0s − ∆

2
K̄0s

)
c̄0 s−1 + F̄ 0s

then c1s = c0s is a solution of our resulting equation with q = 1, etc. In other words: if
an initial status is always stationary then no change of v and no time-redistribution of
c can be expected. Of course all calculations must be done in all three phases; thus our
mesh (uniform for formal simplicity here) {0,∆, . . . ,m∆} has to cover Ω; outside I only
some additive terms in the last formula degenerate to more simple ones.

6. Conclusions. We have derived a mathematical model of diffusional phase trans-
formation that can simulate a lot of phenomena known from practical observations and
measurements. For a stationary case we have developed a relatively robust and effi-
cient solver, able to be applied to the sensitivity analysis of various changes of material
characteristics (whose exact deterministic character is doubtful), including complicated
“nonlinear corrections” ϕi, caused by non-trivial physical phenomena.

To reach the higher level of understanding of diffusional phase transformation, the
following research steps can be proposed: i) numerical simulations based on the non-
stationary version of the presented solver, ii) development of the model for phase trans-
formation of substitutional and interstitial (not purely substitutional) alloys, iii) including
the generation and annihilation of vacancies (cf. [6]), connected with a significant defor-
mation at the migrating interface. The results of simulations of transformation kinetics
based on new models should be identified with dilatometric measurements for a selected
set of alloys.
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