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MATHEMATICAL THEORY FOR THE GINZBURG-LANDAU
APPROXIMATION IN SEMILINEAR PATTERN FORMING SYSTEMS
WITH TIME-PERIODIC FORCING APPLIED TO
ELECTRO-CONVECTION IN NEMATIC LIQUID CRYSTALS*

HANNES UECKER', NORBERT BREINDL}, AND GUIDO SCHNEIDERS

Abstract. Electro-convection in nematic liquid crystals and the Faraday problem are paradigms
for pattern formation in systems with external time-periodic forcing. Close to the first instability the
bifurcating solutions can be described via perturbation analysis by a Ginzburg-Landau equation. This
formal procedure can be justified mathematically through approximation and attractivity theorems. In
this paper this theory is explained for a regularized standard model describing electro-convection in
nematic liquid crystals.
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1. Introduction. In the experiments for electro-convection in nematic liquid crys-
tals a thin layer of such a material is contained in between two spatially extended electrode
plates. When an alternating current is applied to the electrodes an electro-hydrodynamic
instability can occur if the voltage is above a certain threshold. The trivial spatially
homogeneous solution becomes unstable and bifurcates into non-trivial pattern [4, 12].
This experiment together with the Faraday problem is a paradigm for pattern formation
in systems with external time-periodic forcing.

The mathematical description of the dynamics of the bifurcating patterns is based
very often on the reduction of the governing partial differential equations to finite or
infinite-dimensional amplitude equations. The most famous amplitude equation occurring
in such a setup is the so called Ginzburg-Landau equation (GLe)

OrA = coA+c10% A+ co A|A]? (1.1)

with A = A(X,T) € C depending on X € R and T' > 0 and with coefficients ¢, c1, ca € C.
It is derived by multiple scaling analysis and describes slow modulations in time and space
of the amplitude of the linearly most unstable modes. Our interest is in the justification
of GLes for pattern forming systems with time periodic forcing.

The GLe has been derived for example for reaction-diffusion systems and hydrody-
namical stability problems, as the Bénard and the Taylor-Couette problem. For these
examples the GLe has been justified as an amplitude equation by a number of mathe-
matical results: so called approximation and attractivity theorems have been established
by a number of authors for model problems, but also for general systems including the
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Navier-Stokes equation, cf.[3, 26, 6, 15, 13, 16, 22]. Nowadays the theory is a well es-
tablished mathematical tool which can be used to prove stability results [25, 21], upper
semi-continuity of attractors [10, 20] and global existence results [14, 19]. Equations of
Ginzburg-Landau type have also been used extensively to describe pattern formation in
nematic liquid crystals [23, 12, 28, 1].

However, the literature cited above about the mathematical justification of GLes is
restricted so far to autonomous systems and is not covering the situation of nematic liquid
crystals due to the time-periodic forcing which has to be applied in the experiment in or-
der to avoid the destruction of the experiment through electrolysis. In [2] we restricted the
discussion of the validity question for time-periodic systems to a scalar model equation.
Here we improve the results from [2] in such a way that all approximation and attractivity
results from the autonomous case transfer almost one to one to the time-periodic case.
As a consequence the analyticity of the solutions of the GLe as in [2] is no longer needed.
The main steps of the theory are explained for the standard model describing electro-
convection in nematic liquid crystals. However, we circumvent the problem of the local
existence and uniqueness of solutions of the standard model by considering a regular-
ized version. Moreover, to avoid some additional functional analytic difficulties with the
Navier-Stokes equations over domains with more than one unbounded space directions,
which are due to the non-differentiability of the symbol of the Helmholtz projection in
that case, in the following the problem is considered in an infinitely extended strip.

The plan of this paper is as follows. In Section 2 we describe the standard model.
In Section 3 this (fully nonlinear) evolutionary system is modified by some regularizing
terms to obtain a semilinear system. In Section 4 we explain the spectral situation
necessary for a Ginzburg-Landau approximation. Section 5 contains an approximation
and an attractivity result for the Ginzburg-Landau approximation and some consequences
of these results. In Section 6 we explain in an abstract way how the ideas from the
autonomous case transfer to the time-periodic case, while in Section 7 we show in some
detail how to derive the autonomous GLe from the time-periodic system. In Section 8
we discuss the Faraday problem as another pattern forming system with time-periodic
forcing.

NOTATION. The space H;; of m-times weakly differentiable uniformly local Sobolev-
functions R x 3 — R is equipped with the norm

lull g, (rxs) = sup. S NFull2(@atnyxsy  with  [fullFaiq) = /Q u(z)[* da.
ER =0

Throughout the paper we denote possibly different constants C' with the same symbol if
they can be chosen independent of the small bifurcation parameter 0 < ¢ < 1.

2. The standard model. There are essentially two models for the mathematical
description of electro-convection in nematic liquid crystals. These are the standard model
([29] and the references therein) and the weak electrolyte model. The latter has been
introduced by Kramer and Treiber in [24, 23] to overcome some insufficiencies of the
standard model, which, however, will not concern us here. Thus, for simplicity we restrict
ourselves to the standard model. The following presentation and non-dimensionalization
of this model is similar to [5].

The continuum theory of Ericksen [7] and Leslie [9] treats nematic liquid crystals as
incompressible fluids with the average molecular axis described locally by a director field
n of unit vectors. For a layer of nematic liquid crystals in between two horizontal plates,
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the Leslie-Erickson equations for n and the generalized Navier-Stokes equations for the
fluid velocity v and the pressure p in the presence of an electric field E are given by

(Or4+v-VIn=wxn+6-(A\An —h), (2.1)
Py(0y +v-V)v=—Vp— V- (T +10) + m°pE,
V-v=0,
where w = (V X v)/2 is the vorticity. As explained above, here we neglect the sec-

ond unbounded space direction and thus consider the infinitely extended strip (z,z) €
R x (0,7). The molecular field h is given by

h=2 (gi -V 6@;) —¢eqm(n-E)E (2.4)
where
2f = (V-n)? + Ky[n x (V xn))*> + Kz[n- (V xn)]?, (2.5)

is the elastic energy density describing splay, twist (K3), and bend (K3) deformations.
We refer to [5] for a physical interpretation of the constants Py, A, Ko, K3, and €,. The
electric field E = E(x, z,t) € R? is considered to be quasistationary, i.e.rot E = 0. It is
then split into an external forcing and some potential part, i.e.

2
E:£E0 coswot( L )—V¢, (2.6)
T 0
The tensors A, and TV%*¢ are, respectively, the shear flow tensor
Aij == (8ivj + (9]’01)/2 (27)
and the viscous stress tensor
3
=T = Z(alnmjnkmAkl + aonim; 4 agnmy (2.8)
k=1
+agAij + asningAg; + asningAgj),
with m = §+(AAn—h) and coefficients . .., ag. The tensor II is the nonlinear Ericksen
stress tensor
3
of
I, = Z P Nk - (2.9)
k=1 ;
The projection tensor 0;5 = d;; — ngn; in (2.1) guarantees that |n| = 1 as long as the

solution exists.

In the standard model for electro-convection the continuum theory of Ericksen and
Leslie is combined with the quasi-static Maxwell equations under the assumption of an
ohmic resistivity, i.e.

P(0;+v-V)p=-V-(cE0o) (2.10)
for the charge density p. Finally the system is closed by Poisson’s law
p=V-(cE). (2.11)
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The dielectric tensor € and conductivity tensor o are given by €;; = €19;; + e,n4n; and
0ij = 010;5 + 04n;n;, respectively. The parameters P; and P, are Prandtl-type time
scale ratios. Again we refer to [5] for a physical interpretation of the constants Pi, oy,
Eijy O, T.

We assume rigid vertical boundary conditions derived from ideal conducting plate
conditions, rigid anchoring for the director, and finite viscosity. This means

n2:’01:?)2:¢:0 (212)

at z = 0,7, i.e.the coordinate system is chosen such that n = (1,0) at the upper and
lower plates located at z = 0, 7. The model is invariant under arbitrary translations in x
and under the reflection

(7,n2,v1) — —(2,n2,v1).

3. The regularized standard model. Using Poisson’s law, E resp. ¢ can be
expressed in terms of p and so (2.1)—(2.3) and (2.10) can be rewritten as a system of
dynamical equations for n, v, and p. Since n? +n2 = 1 for our purposes it is sufficient
to consider ng. System (2.1)—(2.3) and (2.10) for ng, v, and p is fully nonlinear and a
mixture of different types of PDEs as quasilinear parabolic equations and balance laws.
We are not aware of any local existence and uniqueness result for this system in the
literature. Since such a theorem is fundamental for any approximation result we consider
a regularized version of the standard model. In order to obtain a semilinear system, we
add artificially a regularizing differential operator —3A2%. For small 3 > 0 the regularized
system and the original system show qualitatively the same bifurcation behavior. Thus
we consider

iy = (ea, —(v-V)n +w x n+ - (AA — h)) — BAZny, (3.1)
O =Py tQ(—(v-V)v— V- (T + 1) + m2pE) — BQA%v, (3.2)
dip=—v-Vp— P 'V - (uEo) — BA*p,

where @ is the projection on the divergence-free vector fields {v | V- v = 0}, cf. [13, 19],
and where E is defined through (2.6) and (2.11) in terms of p, n, and Ey. The extension
of @ by identity to the p and n variables is also denoted by . The system is equipped
with the boundary conditions from the non-regularized system

ng=vy=v3=¢=0 (3.4)
for z = 0,7, and additional artificial boundary conditions due to the regularization
0*ny = 0?0y = 02wy = p = 0%p =0, (3.5)
for z = 0, 7. In the following (3.1)—(3.3) is abbreviated as
oV =MtV 4+ N(t,V) (3.6)

where M (t)V stands for the linear and N(t,V) for the nonlinear terms with respect to
V - (n23v171)2ap)'

4. Linear stability analysis. In order to analyze the stability of the trivial solution
V=0 in (3.6) we consider the linearized system

d,V = M(t)V. (4.1)
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Due to the translational invariance of the problem the solutions are given by Floquet-
Fourier modes

V = ¢k, 2z, t) R rm(R)E 0
with k € R, m € N, and ¢,,, periodic in ¢, i.e.
Pm (s t) = Pyt + 2m/wo).

For V' = 0 asymptotically stable, we have for all m € N and k € R that Re A\, (k) < 0. If
V' = 0 becomes unstable through increasing Fy, then there exists one curve of eigenvalues
A1 satisfying ReAj(k.) = 0 if the amplitude Ey of the external alternate current equals
a critical value Ejc¢. Due to the fact that we have a real-valued problem we also
have ReA;(—k.) = 0. We assume that for k close to k. the curve of eigenvalues \; is
simple. Due to the reflection symmetry for x — —z this implies A\ (k) = A;(—k) and so
ImA; (k) = 0 for all wave numbers k where \; is simple. For Ey = Ej ¢,y we assume that
all Floquet exponents possess a real part strictly less than —oq for a o9 > 0, except of
A1(k) for k in small neighborhoods of k.. Since there is no possibility of confusion with
the dielectric tensor we denote the bifurcation parameter as usual by €. It is defined by
2 =FEy— Ey,crit- Then by continuity for e> 0 we have that the spectrum is only changed
slightly, cf. F1G. 4.1.

Re\

al other eigenvalues

FiG. 4.1. The real part of the spectrum as a function over the Fourier wave numbers k.

5. Mathematical theory for the Ginzburg-Landau approximation. The ansatz
for the derivation of the GLe is

eYa(z, z,t) = cA(X, T)e*® 3y (ke, 2, 1) + c.c. + O(e?), (5.1)
where
X =cz and T = &%t,

and @1 is the critical mode belonging to m = 1 in (4.2). Inserting (5.1) into (3.6) shows
that A has to satisfy the GLe (1.1), see Sec. 7 for details.

In the following we formulate an approximation and an attractivity result for the
Ginzburg-Landau approximation and explain the consequences of the validity of such
results. In the subsequent sections we explain how to conclude these theorems from the
autonomous case.
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5.1. An approximation result. The formal approximation (5.1) is only useful if
the dynamics known for (1.1) can be found approximately in the original system (3.6), too.
This means that for T' € [0, Tp] or t € [0, Tp/e?], respectively. the error (in THEOREM 5.1
of order O(g?)) should be much smaller than the approximation €14 and the solution V
which are both of order O(e).

THEOREM 5.1. Letm > 8 and A = A(X,T) be a solution of the GLe (1.1) for T € [0, Tp],
satisfying

sup ||A(T)||Hn < 0.
T€[0,To] ’

Then there are g9 > 0 and C > 0, such that for all ¢ € (0,e0) we have solutions V' of
(3.6) satisfying

sup sup |V (2, 2,t) — etba(, z,t)| < Ce2
t€(0,To/e?] (x,z)ERX(0,m)

We remark that there are other amplitude equations [17] which although derived by
a formal perturbation analysis do not reflect the true dynamics of the original equations.
Moreover, the proof of THEOREM 5.1 is not trivial since solutions of order O(e) have to
be bounded on a time interval of length O(1/e%). THEOREM 5.1 can be improved in a
number of directions. The error can be made smaller by adding higher order terms to
the approximation. However the time scale cannot be extended [26]. By a more involved
analysis [14] less regularity for the solutions of the GLe is needed.

5.2. An attractivity result. The following attractivity theorem shows that solu-
tions to order O(e) initial conditions develop in such a way that after a time O(1/g?)
they can be approximated by the solutions of the GLe (1.1). Thus, the GLe describes the
solutions in the attracting set of the system, i.e. the interesting dynamics of the standard
model close to the threshold of the first instability.

THEOREM 5.2. Lets > 4. For everym > 0, Cy > 0 there exist Ty > 0, g9 > 0 and Cy > 0
such that the following is true. For all € € (0,¢0) and all Uy € H},, with ||Up||u: < Cie

the associated solution V of (3.6) at time t = Ty /€% can be written as
V(x,2,To/e?) = eA(X) e® @y (ke, 2,t) + c.c. + €2 R(x, 2)
where || Al gm < Cy and |R||gs < Cs.

This is only one possible version of such an attractivity theorem. See [6, 16, 19] for
other more advanced versions of attractivity theorems.

5.3. Global existence and upper semi-continuity of attractors. As already
said the above versions of the approximation and of the attractivity theorem can be im-
proved such that the outcome from the attractivity theorem can be used as input for
the approximation theorem. The combination of the two theorems allows for instance to
transfer the global existence of solutions from the GLe to the original system, cf. [14, 19].
Moreover, the upper semi-continuity of attractors holds, cf.[10, 20]. The proofs of these
results are based only on suitable approximation and attractivity theorems. Therefore
the global existence and upper semi-continuity of attractors also hold in the time-periodic
case. Hence, the GLe really gives a proper description of these systems near the bifurca-
tion point also in case of a time-periodic forcing.
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We summarize this as follows:

ABSTRACT THEOREM. Suppose that the assumptions (A1)-(A3), (B1), (BS3), and (C1)
and either (B2) I or (B2) II of [19] hold for (3.6) with the following modifications. The
operator M (t) is a sum of the sectorial operator A from (A2) and a time-periodic operator
B(t) : Z — Z* where Z and Z* are the Banach spaces from (A1). Moreover, (B2) I or
(B2) II hold for the Floquet exponents of M(t). Then the approzimation and attractivity
result from [19] remain valid if the Fourier modes in the approximation are replaced by
the Floquet-Fourier modes.

6. How to transfer the ideas from the autonomous to the time-periodic
case. In the following we sketch all modifications from the autonomous case to the time-
periodic case such that the reader will be able to check the validity of the above approx-
imation resp. attractivity result by reading parallel for instance [13, 2] or [19].

The main problem in the proofs of the approximation results is the long time scale
O(1/%) which is much longer than O(1/¢) which can be obtained by a simple application
of Gronwall’s inequality due to the O(g) magnitude of the solutions. Only by a separation
of the modes with positive or slightly negative growth rates from the ones with strictly
negative growth rates in the linearized system the long time scale can be approached.
However, there is no spectral gap and so like in the autonomous case it turns out that
it is essential for the mathematical analysis to consider the Fourier transformed system
with respect to the unbounded spatial variable. In Fourier space (3.6) yields

OV (k,t) = M(k,t)V (k,t) + N(V)(k,t), (6.1)

with k& € R and V(k,t) a vector-valued function of z. For fixed wave number k € R
close to k. there is a spectral gap and so by [8, Theorem 7.2.3] (which is applicable
due to our regularization), a separation into so called critical and non-critical modes is
possible. Using again [8, Theorem 7.2.3] shows that the non-critical part of the evolution
operator associated to M (k,t) is damping with some exponential rate. Moreover, [8,
Theorem 7.2.3] allows to transform the one-dimensional critical part of M (k,t) with some
bounded transformation into an autonomous operator, i.e.into a multiplication with A;.
Since A; is simple the associated semigroup shows growth rates of order (’)(eszt). Using the
multiplier theorem in H;", -spaces from [13] shows that the associated evolution operators
has this growth rate in physical space in the H;", -spaces, too. Since the estimates for
the nonlinear terms are exactly the same in the autonomous and in the time-periodic
case the proof of the approximation result then goes along the lines of the autonomous
case, cf.[13, 19]. Here, the nonlinearity is a Lipschitz continuous mapping from some
interpolation space X® with a € (3/4,1) into X = HY, N {V = QV}, where X! is
the domain of definition of —3QA2. The error is then bounded in X using Gronwall’s
inequality, now in the system for the critical and noncritical modes. X'* can be embedded
by [8, Theorem 1.6.1] into H, f’u which can be embedded by Sobolev’s embedding theorem
into the space C} of uniformly bounded continuous functions.

Similarly the proof of the attractivity result also goes along the lines of the au-
tonomous case, cf.[19].

7. Derivation of the Ginzburg-Landau equation. For the subsequent analysis
it is sufficient that the critical Floquet exponents A\ near k. of M (k,t) are simple. How-
ever, in order to make things less abstract we assume that the linear operator M (k,t) with
M (k,t) = M(k,t + 2r/wp) yields for every k € R and ¢ € [0, 27 /wo) a Floquet Schauder
basis (¢;(k,t))jen of L2((0,7), C*) of 21 /wo-periodic functions ¢; (k,t) = @;(k, t+2m /wo)
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solving
Ok, t) = M(k, )@ (k,t) — X (k)5 (k, 1),

i.e. the Floquet functions e (Mt 3, (k, t) are solution of O,V (k,t) = M(k,t)V(k,t) and
Aj(k) are the associated Floquet exponents. This means that we assume that there are
no Jordan blocks in the monodromy operator for M (t). The functions ¢; are normalized
by setting ||¢;(k,0)||L2=1. For defining projections onto the (;(k,t) we consider the
adjoint problem fatf/(k,t) = M* (k,t)V(k,t). Consequently also this problem has for
every k € R and t € [0,27/wp) a Floquet Schauder basis (¢} (k, 1)) en of L2((0,7),C*) of
2w fwo-periodic functions @7 (k,t) = ¢} (k,t + 27 /wo) solving

— 0] (k1) = M*(k, )5 (k, t) = X5 (k)5 (K, 1),
and satisfying the orthogonality
(@7, 85) = bij- (7.1)
A solution V (k,t) of (6.1) is expanded in terms of the Floquet functions ¢;(k,t), i.e.
V(k,t) = aj(k,t);(k,t) with a;(k,t)€C, (7.2)
JEN

such that

O | Do ag(k, )ik, t) | =D ((0edy (k. )@ (ks t) + a5 (k, 1)Dup (K, )

jEN JEN

= Z a;(k, t)M(k,t)@; (k,t) + N(V)(k, ).

jEN
In order to find the equations for the coefficient functions é;(k,t) we apply the adjoint
eigenfunction ¢ (k,t) and find
Ohitj (k1) = (k)i (k. t) + (&5 (k, 1), N (k. 1) (73)

for j € N. We used (7.1) and

— (5, 1), 0 (ke 1)) +( (e, ), M (K, )i (e, 1))
= (@1 (K, 1), \j (k) @ik, b)) = N;(k)di;.

Our derivation of the GLe is now based on (7.3). For notational simplicity we avoid the
explicit notation of the small parameter ¢ in the following. We make the ansatz

ar(z,t) = e Ay (X, T) e® 462 Ay 1 (X, T) e**<* 42 Ay (X, T) + c.c.,
a; (37, t) = €2A2’j (X, T) eQika —‘1-62140)]‘ (X, T) + c.c.

where j € N\ {1}, X = ex and T = ¢%t. With this ansatz we derive formally a GLe with
time periodic coefficients. We write the nonlinearity of (3.6) in the form

N(V)=B(tV,V)+C(t, V,V,V)+0O(V*?), (7.4)
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with bilinear and trilinear symmetric terms B and C' and introduce the abbreviations
Aj(t, k,k—m, m) — g ikz B(t’ @1(k —m, t) ei(kfm)ac7 @j (m, t) eimz)7
A(t»kak — U, l =g, 1)

= e—ikm C(t, (,51 (k‘ — ll, t) ei(k_ll)z7 @1 (ll — lQ, t) ei(ll_l2)z, (,51 (lg, t) eilQm).

For £2¢%% in the j-the equation we obtain
2j(0,0) Ao ; = —2(5, Bi(t, 0, ke, —ke)) | Au |, (7.5)
and for £2e%¥<* in the j-th equation

Aj(2ke,0) Az j = — (3, Bu(t, 2ke, ke, k) AT (7.6)

For £3e?*<® in the equation for j = 1 we obtain

OrAi = doAq + dlag(Al (77)
+285, Y. Bilt ke, ke, 0)A1 4o
JEN\{1}
+2(¢7, Z Bj(tvkcv_k072kc)>A—1A2,j
JEN\{1}

+3(¢7, Ot ke ke ey —ke)) A1 Ar 2,

with do = 021 (ke, 0) and 2d; = 07\ (ke,0). In (7.7) we replace Ay ; through (7.5) and
A, ; through (7.6) and obtain the GLe

OrA; = do(e) A1 + di(e)0% Ay +~(t,) A1 AL)?, (7.8)

with a time-periodic coefficient (¢, ¢). Since all coefficients d; and v depend smoothly
on €% we have the existence of limits ¢; and o (¢) with

di(e) =c; + O(e%) and Y(t,€) = vo(t) + O(?).
In the limit €2 — 0 we obtain a GLe
8TA1 = CoAl =+ c18§(A1 =+ ’)/O(T/EQ)Al |A1 |2. (79)

Averaging over the highly oscillating cubic coefficient vo(7/e2) shows that for the dy-
namics only the mean value co is essential in lowest order. Thus we finally have the
autonomous GLe

OrA1 = cpA1 + 0183(141 + CQA1|A1|2. (710)

8. Another example. When a container of fluid is shaken vertically with sufficient
strength, pattern develop on the the free surface. This pattern forming system is known
as the Faraday problem. If this problem is considered in an infinitely extended strip the
trivial solution, i.e. the flat surface, becomes unstable exactly as described in Section 4,
cf. [11, 27]. The first pattern to appear is sub-harmonic with half the external frequency.
One model to describe the Faraday problem are the Zhang-Vinals equations [27] which
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are derived in the limit of weak damping and a deep container and which are given in
case of two unbounded dimensions by

Oth =yAh+ D¢ -V - (hV¢) + %VQ(hQDqﬁ) — D(hD¢) (8.1)
+D(hD(hDg¢) + %thq’)), (8.2)
Oip = YAG + ToAh — G(t)h + %(D@Q - %(w)? (8.3)

~(DY)(hAG + D(hDG)) — 3To¥ - ((VK)(VA),

where h(x,t) is the surface height and ¢(x,t) a velocity potential, and the symbol of D in
Fourier space is D(k) = |k|. The external forcing is given by G(t) = G cos(wot) and the
parameters v and Iy correspond to viscosity and surface tension respectively [27]. In case
of a strip we have V — 9, and A — 92. The Zhang-Vinals equations are fully nonlinear
and so our theory again only applies to a regularized version, i.e. if —BA2h and —3A%¢,
with a small 8 > 0, are added to the right hand side of (8.1) and (8.3), respectively.
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