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REMARKS ON THE INCOMPRESSIBLE NAVIER-STOKES FLOWS
FOR LINEARLY GROWING INITIAL DATA*

OKIHIRO SAWADAT

Abstract. We deal with the Cauchy problem of the Navier-Stokes equations with linearly growing
initial data Uy := —M=x + ug(x). Here M is an n X n matrix with assumptions tr M = 0 and M?
is symmetric, and up € L5 (R™). We establish the local-in-time solvability applied Ornstein-Uhlenbeck
semigroup theory. We also show that our solution is analytic in z, if || e** || < 1 for all ¢ > 0, nevertheless,
the semigroup is not analytic.

Key words. Navier-Stokes equations, mild solution, Ornstein-Uhlenbeck semigroup, regularizing
rate, analyticity
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1. Introduction. We consider the incompressible and viscous fluid flows in R™ for
initial velocity which grows linearly at space-infinity, which are described the Navier-
-Stokes equations, i.e.

U, — AU + (U,V)U + VP =0 in R"x(0,T),
V.-U=0 in R"x(0,7), (1.1)
U(O)=U, with V-Uy=0 in R"

Here U = U(t) = (U'(z,t),...,U™(x,t)) and P = P(x,t) stand for the unknown velocity
and the unknown pressure of the fluid; Uy = (Uj(x),...,Uf(x)) is the given initial
velocity. There are many contributions of literatures on existence of solutions of (1.1) in
the whole space, see e.g. [1, 5, 6, 7,9, 13, 23]. All these results assume that the initial data
decay as |z| — oo. On the other hand, Okamoto [26] showed that for certain concrete
flow problems there exist many exact solutions U which have the property that U grows
linearly as |z| — oo.

Our purpose is to construct mild solutions to the equations of Navier-Stokes in
L2(R™), when the initial datum may grow as —Muaz, where M = (m;;)1<i j<n is a real-
valued constant matrix satisfying tr M = 0 and M? is symmetric. We hence assume
throughout this paper that the initial velocity is of the form

Up(z) = =Mz + up(x), x eR”, (1.2)

where ug € LP(R™)™ is a function.

In the case M = 0, it is well known that there exists a local-in-time smooth solution
to (1.1) provided the initial data Uy belongs to L2(R"™) for p > n; see e.g. the articles in
the list of References. However, if M ## 0, the situation is more complicated.

We shall explain the reason why we study (1.1) with (1.2) in Physical point of view.

*This work was partly supported by JSPS.
fDepartment of Mathematical Science, School of Science and Engineering, Waseda Univeristy, Okubo
3-4-1, Shinjuku, 169-8555 Japan. (sawada@gm.math.waseda.ac.jp).
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Let us think about the case M is skew-symmetric, e.g.

0 —a O
M =R := a 0 0
0O 0 O

for a € R, Notice that U := — Rz describes the pure rotation of the fluid. This problem
was investigated by Hishida and by Babin, Mahalov and Nicolaenko. Indeed, Hishida con-
structed in [18, 19, 20] a unique local-in-time mild solution, provided that uo € H/?(R?),
and its initial-boundary value problem in the exterior domain is also considered. (We
will see the notion of a mild solution below.) Babin, Mahalov and Nicolaenko [3], [4]
also proved the existence of a local-in-time mild solution (and global regularity theorem),
provided ug is in LP(R?) or wg is a periodic function enjoying the smoothness.

In [29], the second author of this paper proved the existence of a unique local-in-time
mild solution, still for M = R, provided ug belongs to the Besov space 32071

B, ={feS’ Z g * flloo < 00, f= Z @j* fin 8’ sense}.

j=—o00 j=—o00

Note that ngl C BUC (and this embedding is continuous), where BUC denotes the
space of bounded and uniformly continuous functions. The virtue of Bgo’l and several
example of functions are found in [30].

An interesting example of M is

-b 0 0
M=J:= 0 —-b O
0 0 2

for b € R. According to Majda [24], —Jz for b < 0 corresponds to the drain along to x;
and zo-axises horizontally and to the jet along to xs-axis of the fluid. He showed that
(U, P) is an exact solution of (1.1), where

U:i=-Mz, P:=(lx,z),

and II := L[(M*¥™)2 + (M*™)?] under the assumptions that tr M = 0 and M? is sym-
metric. We have denoted by MY™ and M3 the symmetric and skew-symmetric part of
M, respectively, i.e., M¥™ := L(M + MT) and M := L(M — MT). Here M denotes
the transposed matrix of M.

Giga and Kambe [11] also investigated the axisymmetric irrotational flow (mainly,
the behavior of its vortex), and studied the stability of the vortex when the velocity field
of the fluid U is expressed as U = —Jx + V, where V = (V!,V2,0) is a two-dimensional
velocity field.

This paper is organized as follows. In Section 2 we state the main results. We shall
refer to key lemmas for proving the theorems in Section 3. In Section 4, we show the
proof briefly.

2. Main results. In this section we refer to the main results in this paper. Before
stating our main theorem, we consider a simple substitute as follows:

w:=U—-U=U+Mz, p:=P—P=P—(z,z).
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Note that, if (U, P) is the classical solution of (1.1), then (u, P) should satisfy the following
equations in classical sense:

wy + Au + (u, V)u — 2Mu + VP =0 in R" x (0,7),
V-u=0 in R" x (0,7), (2.1)
w(0) =wup with V-ug=0 in R".

Here we have defined the operator A by
Au = —Au— (Mz,V)u+ Mu
with domain
D(A) = {u € W*P(R™) N LE(R"™); (Mz,V)u € LP(R™)}.
Thanks to the results of Ornstein-Uhlenbeck semigroup theory by e.g. [25], we know that

— A generates a (Cp)-semigroup in L2 (R™) for p € [1,00). Also, — A generates a semigroup
in LY®. We also have a representation form of semigroup

1 —tM [ p(etM g ) e 1(Q ) gy,

—tA o
<@ = e e

where Q; := fot esM esM” s for all t > 0. Note that this semigroup is not analytic; see
e.g. [18]. Using this semigroup, we deduce the integral equation by Duhamel’s principle:

t t
u(t) = e My — / e E=IAPY . (u(s) @ u(s))ds + 2/ e~ (=904 Py(s) ds.
0 0

Here P is the Helmholtz projection from LP to L?. Since V - u = 0, we have used that
(u,V)u =V - (u®u), and that A commutes P (since V - Pu = 0). The solution of the
integral equation is often called a mild solution, we use this terminology. The integral
equation is formally equivalent to (2.1). Indeed, once we get the mild solution u, the pair
(u, P) satisfies (2.1) in classical sense with some P; see REMARK 2.1(i) below. In what
follows we rather discuss the mild solution.

We now state the local-in-time solvability theorem and the uniqueness result for mild
solutions in LP spaces.

THEOREM 2.1. Letn > 2, p € [n,00). Let M be a real-valued constant n X n-matric.
Assume that ug € LP(R™). Then there exist Ty > 0 and a unique mild solution u such
that

1

[t — t¥G 0] € ([0, To); LL(R™))
[t 2622 V) € C([0, To); LY(R™))
for all q € [p,00].

REMARK 2.1.

(i) In this theorem we may relax the condition of M, although in order to derive
(2.1) from (1.1) with (1.2) we need tr M = 0 and M? is symmetric. The mild solution u
is smooth in z, i.e. u(t) € C°(R™) for all t € (0,7p). This comes from the regularizing
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effect of the semigroup; see (3.6) in Section 3. Hence, (u, P) is a classical solution of (2.1)
provided we choose P appropriately, for example,

n n
8kP = Z akRiRjuiuj —2 Z mingRjui.
i,j=1 ij=1
Uniqueness of classical solutions follows from the argument by [22] and [31].
(ii) When the initial data ug € L or BUC,, it is not easy to obtain a unique mild
solution in general, because the Helmholtz projection is not a bounded operator in L°°.

However, we can show the existence theorem of the mild solutions v € C([0,Tp); Bgoyl)
provided ug € BY, ; with V- ug = 0.

(iii) In the case n = p = 2 we obtain the global-in-time solution. Multiplying
(2.1) with u and integrating over R?, as the standard way, we can derive |u(t)||s <
Clluo||2 exp{|M |t} for all t > 0. Here C is a numerical constant, and |M| := max; ; [m;;|.
That is not conservative, however, that sufficiently gives an a priori estimate for extending
the mild solution globally-in-time. In 3-dimensional case, we do not know how to get the
global solvability as well as the case M = 0.

We see that v € C* in REMARK 2.1(i). It is a natural question whether v € C¥ or
not. We can verify it, if M satisfies an additional condition.

THEOREM 2.2. Assume, furthermore, that
[e™M||<1 forall t>0. (2.2)
Then w is analytic in x.

Besides, it is impossible to get the analyticity in time, since the Ornstein-Uhlenbeck
semigroup is not analytic. It is clear that (2.2) holds true if M is skew-symmetric. We do
not know whether the assumption (2.2) is essential or not. THEOREM 2.2 is an application
of the regularizing rate estimates of v and its higher order derivatives. We now state them
in the case p = n only (for the shake of simplicity).

PROPOSITION 2.3. Letn > 2, ug € LY(R™) and r € (n,00). Assume that M satisfies
(2.2). Let u be the local-in-time mild solution of (2.1) for some T > 0. Assume further
that there exist constants My and Mo such that

sup |lu()|ln < My <oco and  sup t%(%_%)ﬂu(t)ﬂr < My < o0.
0<t<T 0<t<T

Then there exist constants K1 and Ko (depending only onn, r, M, T, My and Ms) such
that

V™ u(t)||y < Ky (Kom)™t~ %263 (2.3)
for allt € [0,T], m € Ny and q € [n,x)].

REMARK 2.2. There exists a constant C' > 0 such that the size of radius of the Taylor
expansion p(t) w.r.t. x is estimated as

VMt —1/m
p(t) > limsup (”;‘n(,)”°°> >CVt  te(0,T). (2.4)
This estimate follows from PROPOSITION 2.3 with ¢ = oo, the Stirling formula, and
Cauchy-Hadamard’s criterion. It is clear that (2.4) yields THEOREM 2.2.

3. Preliminaries. In this section we prepare the lemmas to prove the theorems.
Firstly, we mention the LP — L7 estimate of e/, and its first derivatives.
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LEMMA 3.1.
(1) Let n > 1, and let 1 < p < q < oco. Then there exist constants C > 0 and w > 0
such that
le=*4 flly < C et~ 2G| ], (3.1)
_ wi 1
IVe™™ fll, < Ce 72| fll, (3:2)

forall f € LP andt > 0.
(2) Assume, additionally, that p < q. Then

2G| e fl, =0 as t—0, (3.3)
2| Ve ™ fl, =0 as t—0 (3.4)

for all f € LP.

Proof. The first parts of LEMMA 3.1 are proved by direct calculations of the kernel of the
representation form of the semigroup, combining with Young’s inequality. To do so, we
use the change the variables y = Qi /2., For proving second parts, we first recall that C§°
is densely subset of LP for p < co. As same as that in [23], by triangle inequality (3.3)
follows from (3.1), obviously. As the same way, the proof of (3.4) is also shown by (3.2).0
Remark that LEMMA 3.1 (and LEMMA 3.2 below) is shown by [8] for the case M = Id.
To prove THEOREM 2.2 (and Proposition 2.3), we need the estimates for higher order
derivatives of the Ornstein-Uhlenbeck semigroup, that is to say, we compute V™ e 4 f.
The difficulties arise from the fact that V does not commute e~ 4. Indeed, we see that

Ve A f=eMetAyy
Nevertheless, thanks to the representation formula, we can get similar estimate to that
of the Stokes semigroup.

I:EMMA 3.2. Letn>1, and let 1 < p < q < 0o. Then there exist constants C'l, C’g,
Cs5 >0, wi, wa, ws, wy > 0 (depending only on n, p, g, M) such that

n 1l

|97 e~ 1], < Gy elrtenmt = 3Gy g, (3.5)

forallt >0, m € N and f € W™P(R"), and also

1 1 m

IV e flly < Co(Cam)™/? elestormt = 3G =% £, (3.6)
forallt >0, m €N and f € LP(R™).
Proof. We first consider the case p = ¢. Since ||eM || = ||e"M" || < Ce*2t for all ¢ > 0
with some constants C' > 0 and ws, it follows that
V™ e fllg < 1™ ™ [le ™ V™ fllg < C e e [ V™ £y, (3.7)
for some wy > 0. This and (3.1) show the assertion (3.5).
To prove (3.6) we compute
_ St A (me m—1 —(1—-L
[V et flly = [V Tz elmm i gt o=zt (3:8)
t N2
< C(%) esm (O ew(m—1)t va—l e—(l—ﬁ)tA qu (39)
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We thus see that there exist constants C' > 0 and ws, w4 > 0 such that
va e—tA f”q < Cmmm/Q ewamt (wst t—m/2|| e—%A qu

Finally, we apply (3.1) to obtain (3.6). |
To show PROPOSITION 2.3 with ¢ = oo, we have to prepare the following estimate of
set of three operators Ve *AP.

LEMMA 3.3. Let 1 <p < oo. Then there exist constants C, > 0 and ws € R such that

||VeitA Plley < Cpt71/2 evst) t> 0.

Remark that P is not bounded in L' and L>. We use the Fourier multipliers theorem:;
refer to [2]. For making short of this paper we omit the proof, since we can find it in [16].
Note also that LEMMA 3.3 has already been proved by [10] for the case A = —A. They
showed it by direct calculation, recalling the e*® = G, is a convolution type operator.

Before closing this section we pick up the bilinear estimate of homogeneous Besov
spaces to show REMARK 2.1(ii).

LEMMA 3.4. There exists a positive constant C such that

1F - 95 Bao 1l < CULF Bioall llgs Bl + 115 B 1|l llg5 Bao 1

)

forall f,g € BY, 1 NBL ;.

We can prove this lemma using by the equivalent norm:

. > 1/q

||U;B;qH ~ [/ 7175 gup |7y + T_yv — 21)||;17 dt} ,
7 0 ly|<t

which is valid for 1 < p,q < 00,0 < s < 2, where 7, is the translation by y € R", that is,

Ty f(z) = f(z — y). In [17] we found the similar proof so that we may skip the details.

4. Proofs of theorems. We give the proofs of theorems briefly.

Proof of THEOREM 2.1. We use the iteration procedure, that is, successive approxi-
mation. We only show it for the case p = n. Let n > 2 and ug € L2(R™). For j > 1 and
t >0 we define u; () := e~*4 ug and functions uj; by

t t
wjir(t) = e Mg — / e IAPY . (uj(s) @ ui(s))ds + 2/ e (=)APMu;(s) ds.
0 0
Since e~*4 acts on LE(R") it follows from the definition of the Helmholtz projection that
the functions u; are divergence-free for all ¢ > 0 and all j.

Let T € (0,1], and let 6 € (0,1). We settle

P 1o
Ag:= sup t 7 [[e ugl,s and Aj:= sup tZ||Ve ugl,,
0<t<T 0<t<T

as well as A, := A; and A;- = A;- where

1-9 .
Aji= sup t7 [[u(t)llnss and  Aj:= sup 7| Vu(t)ln, =1
0<t<T 0<t<T
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We thus obtain the L? — L?-smoothing of the semigroup and the boundedness of P from
L? into LP that

t t
fua(®lls <675 A0+ C [ 0= 972 D us(9): Tus(9)ds +C [ as(6) s ds
0 0

Here r = 15. We apply the Holder inequality. Multiplying with +7" and taking in ¢,
we have

Aji1 < Ag+ C1A;A, + CoTA; (4.1)

with some constants Cy,Cs independent of j and 7.
Similarly, applying V to the approximation equation and estimating it in the L"-
norm, we obtain

Al < AG+ C3A;AL 4 CuT A (4.2)

with some positive constants C3 and Cy. LEMMA 3.1(2) implies that for any A > 0, there
exists Ty > 0 such that Ay, Aj < X for all T < Tj,. Therefore, we obtain bounds for A;
and A;- for any T < Ty uniformly in j provided that T is small enough.

Using the uniform bounds of A; and A’, it follows that t%_fqﬂuj(t)”q as well as
1722 || Vu;(t)|, are bounded for q € [n,00], t < Ty and j € N. The continuity of the
above functions follows from similar calculations.

The estimate on u;1 — u; is the same as above, essentially. It thus follows that ap-
proximations are Cauchy sequences and we conclude that there are unique limit functions

[N

T Ru(t) € C(0, T} Lg),  #7Fw(t) € O([0, Tol; LY),
of the sequences (t%_%quj(t))jzl and (t'7 26 Vu;(t))j>1. Finally, note that v(t) = t'/2Vu(t)
and that v is a mild solution on [0, Tp].

Uniqueness of mild solutions follows as in [12] from Gronwall’s inequality. This com-
pletes the proof of THEOREM 2.1. O

Proof of PROPOSITION 2.3. Suppose that M satisfies (2.2). We start to prove the
assertion (2.3) under the additional assumption that the mild solution is smooth:

8%u € C((0,T); LI(R™)) (4.3)

for all @ € Njj. We may assume (4.3), since it can be shown by similar way; see the
details in [16].

We use an induction w.r.t. m € N. That is, we assume that (2.3) holds true for all
m < k—1. We now proceed to show it for m = k. For simplicity, we suppose that T' < 1,
n >3, ¢ < oco. For e € (0,1) we have

IN

(1—e)t t
IV u()llg < [V* e uollq + (/0 +/(1 )t> IVF e~ =IAPY - (u(s) @ u(s))ll4 ds

(1—e)t t
+2 / +/ |VE et A P Mu(s)|, ds
0 (1—e)t

= B1+B2+Bg+B4+B5.

We shall estimate each the above terms By, ..., Bs separately.
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The estimates for By are derived from (3.6) as follows:

n

By < Co(Cal)2 M flug #5078 < C5(Coh)* 04~ #6704

for t € (0,T) with constants Cs := Ca||ug|l, < CoM; and Cs := Cse®s. This follows
since k/2 < k — 0 for k > 2 and § < 1. The estimates for By, B4 and Bs are basically
same as above, so we omit to prove.

To derive the estimate Bs3, we use the Leibniz rule:

t
By < Cs /( (t — 5)"Y2 | V*u(s) g u(s)]]oo ds

1—e)t
' B
i [ e 3 (Y jezuts) 1,102 u(s) o ds
(1-e)t =k o azs T
=: B3, + Bs3p.

Here C7 = 2C1e*" is independent of k by (2.2): (g) =11, % is a binomial
coeflicient.
Consider Bs,. Firstly, there exists positive constant C such that [Ju(s)|le < Cs™/?;

see the Proposition 3.1 in [15]. Then,

t
Bau < Cs /( (t— 5)" /25712 Thus) |, ds

1—e)t

with Cg is a constant depending only on n,p, q, M, My, My. Next we deal with Bs,. By
assumption of induction, we have

t
Bay < 07/ (t—s)"2 max Y (5)Kl(th\)W\—ég%(%f%)—T
- 1B|=k ¥
(1—e)t 0<r<p
X I (| B — o)) P10 78 G5 s
t
< OrKTKy ™ ) (6)|vl‘”‘_5|ﬁ—7|‘5‘”"6/ (t—s)"5s 17355 ds.
(

0<y<B U 1-e)t

We now use Kahane’s lemma in [21, Lemma 2.1] to get

Bsy < CoK2KE-20kk =043 Gim =3 1 (e).
Here I(¢) := ffﬁg(l — 7')7%7'_% %_%)_g_%dT, and Cy is a constant depending only on
C7 and 0 (independent of k). Moreover,, and the dependence of Cy w.r.t. ¢ is Cg ~
3252137272 50 we need § > 1/2.
Define b. by

b := C5(Cok/e)"? + CoKIKE 2K (e).

Here Cs and Cg are constants. Gathering estimates above, we obtain

t
IVEu(t)g < bt~ 3Gm975 4 és/ (t— )27 12V u(s) | ds.
(1—e)t
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Here Cs is a constant independent of k. By Gronwall’s type inequality in [15, Lemma
2.4], there exists a €, € (0, 1) such that

IV u(t) g < 200,63 G7075, te (0,T). (4.4)

This is possible if we take € small enough. Indeed, there exists kg (depending only on
n,p, M, My, M) such that I(1/k) < 2(1:,8 for all k > ko.

Finally, we verify 2b;/, < K1 (K2k)F=° for suitable choice of K; and K,. Fix a
constant Ko > 0 (depending only on n,p, M, My, Ms) so that ||[V*u(t)||, < Ko holds for
k < ko. For k > 2, since I(1/k) <2, 2by ), < 2{6’5(:”(’5“75 +209K12K§726}k:k_6. Therefore,
we choose

Ky = max (Ko,4C5) and K, :=max (Cg, (4CoK1)°%),
then (2.3) holds true for all m.
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