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OSCILLATION AND NONOSCILLATION CRITERIA FOR RETARDED
FUNCTIONAL DIFFERENTIAL EQUATIONS

ANA PEDRO∗

Abstract. Several criteria are given for having the retarded functional differential equation

d

dt
x (t) =

∫ 0

−1
x (t− r (θ)) dq (θ)

either oscillatory or nonoscillatory, depending upon the smoothness of the delay function r (θ).

1. Introduction. The purpose of this note is to investigate the oscillatory behavior
of the equation

d
dt

x (t) =
∫ 0

−1

x (t− r (θ)) dq (θ) (1.1)

where x (t) ∈ R, r (θ) is a positive real continuous function on [−1, 0] , and q (θ) a real
function of bounded variation on [−1, 0], normalized in manner that q (−1) = 0.

We will analyze the existence or nonexistence of oscillations in terms of the smooth-
ness of the delay functions, r (θ). Namely, when r (θ) is in the set C+ of all continuous
functions in [−1, 0] , or in D+, the set of all differentiable functions on [−1, 0].

It will be also considered the relevant class of differential difference equation

d
dt

x (t) =
p∑

j=1

ajx (t− rj) (1.2)

where the aj are nonzero real numbers and each rj is a positive real number (j = 1, . . . , p).
As is well-know, this equation can be obtained from (1.1), under the assumption that q (θ)
is a step function with a number p of jump points. More concretely it can be obtained
from (1.1) with q (θ) given explicitly, for example, by

q (θ) =
p∑

j=1

H (θ − θj) aj , (1.3)

where, for −1 < θ1 < . . . < θp < 0, by H we mean the Heaviside function and the delays,
rj , are obtained through any function r (θ) ∈ C+ which satisfy r (θj) = rj for j = 1, . . . , p.

A metric is introduced in C+ through the norm ‖r‖ = max {r(θ) : −1 ≤ θ ≤ 0}
(r ∈ C+). The value m (r) = min {r (θ) : −1 ≤ θ ≤ 0} will also have some relevance in
the sequel.

By a solution of (1.1) we mean a continuous function x : [−‖r‖ ,∞[ , which is dif-
ferentiable on [0,+∞[ in manner that (1.1) be satisfied for every t ≥ 0. A solution is
said oscillatory whenever it has an infinite number of zeros; otherwhise it will be said
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nonoscillatory. When all solutions are oscillatory the equation (1.1) is called oscillatory.
If (1.1) has at last one nonoscillatory solution the equation will be said nonoscillatory.

We will take the Banach space NBV of all (normalized) real functions of bounded
variation, φ, on [−1, 0] , such that φ (−1) = 0. Denoting by

∫ 0

−1
|dφ (θ)| the total variation

of φ on [−1, 0], through ‖φ‖ =
∫ 0

−1
|dφ (θ)| , we introduce a norm in NBV .

We will say that a function φ : [−1, 0] → R is increasing (decreasing) on J ⊂ [−1, 0], if
φ is non constant on J and for every θ1, θ2 ∈ J such that θ1 < θ2, one has φ (θ1) ≤ φ (θ2)
(respectively, φ (θ2) ≤ φ (θ1) . Following [1, 2] , a given θ ∈ [−1, 0] is said a point of
increase (respectively, a point of decrease) of φ, if for every ε > 0, sufficiently small, φ is
increasing (decreasing) in [θ − ε, θ + ε] ([−ε, 0] if θ = 0, [−1,−1 + ε] if θ = −1). If there
exists a ε > 0 such that φ is constant in [θ − ε, θ + ε] ([−ε, 0] if θ = 0, [−1,−1 + ε] if
θ = −1), θ will be said a point of constancy of φ.

As is well known, any function φ ∈ NBV can be decomposed as the difference of two
nondecreasing functions α and β : φ = α − β. This decomposition is not unique and a
particular decomposition of φ is given by

φ = φ+ − φ−, (1.4)

where by φ+ and φ− we denote, respectively, the positve and negative variation of φ,
which are defined as follows. For each θ ∈ [−1, 0] , let P be the set off all partitions
P = {−1 = θ0, θ1, . . . , θk = θ} of the interval [−1, θ] and to each P ∈ P associate the sets

A (P ) = {j : φ (θj)− φ (θj−1) > 0} and B (P ) = {j : φ (θj)− φ (θj−1) < 0} .

Then φ+ and φ− are given, respectively, by

φ+ (θ) = sup

 ∑
j∈A(P )

(φ (θj)− φ (θj−1)) : P ∈ P


and

φ− (θ) = sup

 ∑
j∈B(P )

|φ (θj)− φ (θj−1)| : P ∈ P

 .

(whenever A (P ) or B (P ) are empty, we make φ+ (θ) = 0, φ− (θ) = 0). One easily sees
that both φ+ and φ− are nondecreasing functions such that φ (θ) = φ+ (θ)− φ− (θ) , for
every θ ∈ [−1, 0].

The oscillatory analysis of the equation (1.1) can be made, as is well known (see
[3]), through the study of the zeros of the function F (λ) = λ−

∫ 0

−1
exp (−λr (θ)) dq (θ) ,

namely (1.1) is oscillatory if and only if F (λ) 6= 0, for every λ ∈ R. However, taking into
account that for every λ > 0∣∣∣∣∫ 0

−1

exp (−λr (θ)) dq (θ)
∣∣∣∣ ≤ exp (−λm (r)) ‖q‖ ,

and that then F (λ) → +∞, as λ → +∞, we can conclude that (1.1) is oscillatory if only
if

F (λ) > 0, ∀λ ∈ R. (1.5)
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2. Nonoscillations for continuous delays. In this section we will look for con-
ditions in order to have (1.1) nonoscillatory. This happens whenever F (λ) ≤ 0 for some
λ ∈ R.

Noticing that if q (0) ≥ 0 then F (0) = −q (0) ≤ 0, in such situation (1.1) is nonoscil-
latory independently of the delay functions r ∈ C+. This happens, in particular, when q
is nondecreasing on [−1, 0] .

A different situation for having (1.1) nonoscillatory is expressed in the following
theorem.

Theorem 2.1. Let θ0 ∈ [−1, 0] be such that r (θ0) = ‖r‖ and r (θ) < ‖r‖ for every θ 6= θ0.
If θ0 is a point of increasing of q (θ) , then equation (1.1) is nonoscillatory.

Proof. For a matter of simplicity, let as assume that θ0 = 0.
Considering the decomposition of q given by (1.4),

q (θ) = q+ (θ)− q− (θ) (θ ∈ [−1, 0]) ,

θ0 = 0 will be a point of constancy of the function q− . Therefore we have for some ε > 0,
sufficiently small, the function q+ increasing and q− constant on [−ε, 0] , which means
that

F (λ) = λ−
∫ 0

−1

exp (−λr (θ)) dq+ (θ) +
∫ −ε

−1

exp (−λr (θ)) dq− (θ) .

Take 0 < δ < ε in manner that m0 = min {r (θ) : −δ ≤ θ ≤ 0} be such that
m0 > M = max {r (θ) : −1 ≤ θ ≤ −ε} . One easily can see that for every real λ < 0,∫ 0

−1

exp (−λr (θ)) dq+ (θ) ≥
∫ 0

−ε

exp (−λr (θ)) dq+ (θ)

≥
∫ 0

−δ

exp (−λr (θ)) dq+ (θ)

≥ exp (−λm0) (q+ (0)− q+ (−δ)) ,

and

0 ≤
∫ −ε

−1

exp (−λr (θ)) dq− (θ) ≤ exp (−λM) ‖q−‖ .

Thus, for every real λ < 0, we have

F (λ) ≤ − exp (−λm0) (q+ (0)− q+ (−δ)) + exp (−λM) ‖q−‖ ,

that is,

F (λ) ≤ − exp (−λm0) [(q+ (0)− q+ (−δ))− exp (−λ (m0 −M)) ‖q−‖] ,

which shows that F (λ) → −∞, as λ → −∞. Hence (1.1) is nonoscillatory.

Example 1. Consider the equation

d
dt

x (t) =
∫ 0

−1

cos (2πθ) x (t− r (θ)) dθ (2.1)
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where the delay function, r ∈ C+, is strictly increasing in [−1, 0] . With respect to (1.1),
the corresponding function of NBV is q (θ) =

∫ θ

−1
cos (2πθ) dθ, which has a point of

increase at θ = 0, where r (θ) attains its absolute maximum. Hence (2.1) is nonoscillatory.

Corollary 2.2. The equation (1.2) is nonoscillatory if ak > 0, where the index k is
determined by rk = max {r1, . . . , rp} .

Remark 1. We notice that the fact of the point θ0, defined in the Theorem (2.1), be
a point of increase of q (θ), has nothing to see with any increasing characteristics of this
function in the whole interval [−1, 0]. In fact, with q (θ) nondecreasing, or even increasing,
on [−1, 0] , the point θ0 is not necessarily a point of increase of q (θ). Actually, in such
case, θ0 may eventually be a point of constancy of q (θ). Conversely,, if q (θ) has at θ0 a
point of increase, on the interval [−1, 0] it may not be a nondecreasing function. In fact,
it may not be a monotonous function either.

When q is a decreasing function on [−1, 0] it cannot have at θ0 a point of increase.
Under that situation, in [4] are obtained several criteria in view of having (1.1) oscillatory,
namely when ∫ 0

−1

r (θ) dq (θ) < −1
e
. (2.2)

However, in such case is possible to have a nonoscillatory situation as the stated in the
following theorem.

Theorem 2.3. If q (θ) is decreasing, then (1.1) is nonoscillatory if

‖r‖ |q (0)| ≤ 1
e
. (2.3)

Proof. If λ < 0, we have exp (−λr (θ)) ≤ exp (−λ ‖r‖) , which implies that

−
∫ 0

−1

exp (−λr (θ)) dq (θ) ≤ exp (−λ ‖r‖) |q (0)| .

Thus F (λ) ≤ f (λ) = λ + exp (−λ ‖r‖) |q (0)|. Since f (λ) → +∞, as λ → ±∞, then
f (λ) has as absolute minimum the value f (λ0) , for λ0 = 1

‖r‖ log (‖r‖ |q (0)|) . But, by
(2.3), f (λ0) = 1

‖r‖ [log (‖r‖ |q (0)|) + 1] ≤ 0, which means that F (λ0) ≤ 0. Hence (1.1) is
nonoscillatory.

Remark 2. If q (θ) is decreasing, then∫ 0

−1

r (θ) dq (θ) ≥ ‖r‖ q (0) ≥ −1
e
.

Therefore under (2.3) we are in the complement of condition (2.2).

Example 2. Let (1.1) for q (θ) = 1
2

(
θ2 − 1

)
and r (θ) = (1−e)θ+1

e3 . As q (0) = − 1
2 and

‖r‖ |q (0)| = 1
2 e2 < 1

e . Therefore, by the Theorem 2.3, the corresponding equation (1.1)
is nonoscillatory.

With respect to the equation (1.2), the Theorem 2.3, through the formulation (1.3),
enables the following statement.
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Corollary 2.4. If aj < 0 for j = 1, . . . , p, r1 < . . . < rp, and rp

∑p
j=1 |aj | ≤ 1

e , then
(1.2) is nonoscillatory.

Example 3. By Corollary 2.4, one easily sees that the equation

d

dt
x (t) = −1

8
x

(
t− 1

8

)
− 1

8
x

(
t− 1

4

)
− 1

4
x

(
t− 1

2

)
is nonoscillatory.

3. Oscillations and nonoscillations for differentiable delays. With −1 ≤ a ≤
b ≤ 0, let D+ (a, b) be the family of all functions in D+ which are increasing on [−1, a] ,
constant on [a, b] and decreasing on [b, 0] . In case of having a = b = θ0 with θ0 ∈ [−1, 0] we
obtain the family D+ (θ0) of all differential and positive functions which are increasing
on [−1, θ0] and decreasing on [θ0, 0] . If θ0 = −1, D+ (−1) is the class of all positive
differentiable and decreasing functions on [−1, 0] wich we will denote by D+

d . For θ0 = 0
we obtain the family D+

i of all positive differentiable and increasing funtions on [−1, 0].
For these families of delays we start by stating the following oscillatory situation.

Theorem 3.1. Let r ∈ D+ (a, b). If

q (θ) ≥ 0 for every θ ∈ [−1, a] ,
q (θ) ≤ 0 for every θ ∈ [b, 0] ,
q (0) < 0,

(3.1)

and ∫ a

−1

q (θ) d log r (θ) +
∫ 0

b

q (θ) d log r (θ) <
e

r (0)
[log (r (0) |q (0)|) + 1] , (3.2)

then (1.1) is oscillatory.

Proof. With r ∈ D+ (a, b) we have

F (λ) = λ −
∫ a

−1

exp (−λr(θ)) dq (θ)− exp(−λr(a))(q(b)− q(a))

−
∫ 0

b

exp (−λr (θ)) dq (θ) .

Integrating by parts each one of the above integrals, we have

F (λ) = λ + exp (−λr (0)) |q (0)| − λ

∫ a

−1

exp(−λr(θ))q(θ) dr(θ)

− λ

∫ 0

b

exp (−λr (θ)) q (θ) dr (θ) .

(3.3)

On the other hand, since λr (θ) exp (−λr (θ)) ≤ e−1, for every λ ∈ R and every r (θ), from
(3.3) we obtain

F (λ) ≥ λ + exp (−λr (0)) |q (0)|

− e−1

[∫ a

−1

q (θ) d log r (θ) +
∫ 0

b

q (θ) d log r (θ)
]

,
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for every real λ. As the function, ϕ (λ) = λ + exp (−λr (0)) |q (0)| similar to the func-
tion f (λ) considered in the proof of Theorem 2.3, is such that ϕ(λ) ≥ 1

r(0) [log (r (0)
· |q (0)|) + 1], for every λ ∈ R, we conclude that

F (λ) ≥ 1
r (0)

[log (r (0) |q (0)|) + 1]− e−1

[∫ a

−1

q (θ) d log r (θ) +
∫ 0

b

q (θ) d log r (θ)
]

,

for every real λ. Thus, by (3.1), F (λ) > 0 for every real λ, and (1.1) is oscillatory.

For the case where a = b = θ0, we first notice that it cannot be θ0 = 0. Otherwise
(3.1) would be contradictory with respect to the value q (0) . For that case we have then
the following corollary.

Corollary 3.2. With θ0 ∈ [−1, 0[ let r ∈ D+ (θ0). If

q (θ) ≥ 0 for every θ ∈ [−1, θ0]

q (θ) ≤ 0 for every θ ∈ [θ0, 0] ,

q (0) < 0,

(3.4)

and ∫ 0

−1

q (θ) d log r (θ) <
e

r (0)
[log (r (0) |q (0)|) + 1] , (3.5)

then (1.1) is oscillatory.

Example 4. Let in (1.1)

q (θ) =


2 (1 + θ) , if − 1 ≤ θ ≤ −1

4
,

−1, if − 1
4
≤ θ ≤ 0,

r(θ) =


−θ2 − θ +

3
4
, if − 1 ≤ θ ≤ −1

2
,

1, if − 1
2
≤ θ ≤ −1

4
,

−2θ2 − θ +
7
8
, if − 1

4
≤ θ ≤ 0.

As

2
∫ −

1
2

−1

(1 + θ) d log
(
−θ2 − θ +

3
4

)
−
∫ 0

−
1
4

d log
(
−2θ2 − θ +

7
8

)

≈ 0.224 <
8
7

e
[
log
[
7
8

]
+ 1
]

≈ 2.692,

then, by Theorem 3.1, (1.1) is oscillatory.
The special case θ0 = −1 gives the following corollary.

Corollary 3.3. Let r ∈ D+
d . If

q (θ) ≤ 0 for every θ ∈ [−1, 0] ,

q (0) < 0,

and (3.5) holds then (1.1) is oscillatory.
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Remark 3. The condition (2.2) and the condition (3.5) of Corollary 3.2 are inde-
pendent in the following sense. If we consider functions r and q which are decreasing on
[−1, 0] , and such that q (−1) = 0 and q (0) < 0, that is, when the conditions (3.4) are sat-
isfied for θ0 = −1, then neither of two conditions (2.2) or (3.5) implies the other. Indeed
in the following two examples we show that there are pairs of functions q, r, fulfilling the
above conditions, which verify (2.2) but do not satisfy (3.5) (or verify (3.5) but do not
satisfy (2.2)). In both examples the correspondent equation (1.1) is oscillatory.

Example 5. With a > 0 let q (θ) = − 1
a (θ + 1) and r (θ) = 1

5 − θ. Since
∫ 0

−1
r (θ) dq (θ) =

− 7
10a , the condition (2.2) is verified if and only if a < 7 e

10 . On the other hand, as∫ 0

−1

q (θ) d log r (θ) =
−5 + 6 log 6

5a
,

the condition (3.5) of Corollary 3.2 is satisfied if and only if −5+6 log 6
5a > 5 e

(
log 1

5a + 1
)
.

One can see numerically that this inequality is satisfied if a < 0.4505 and is not verified
whenever a ≥ 1

2 . Therefore for 1
2 ≤ a < 7 e

10 the condition (2.2) is verified, but (3.5) is
not.

Example 6. As in the preceding example let q (θ) = − 1
a (θ + 1) , with a > 0. Taking

into account that for r (θ) = (1− θ)1/2
,∫ 0

−1

r (θ) dq (θ) = −1
a

(
−2

3
+

4
√

2
3

)
,

the condition (2.2) is verified if and only if a < e
3

(
4
√

2− 2
)
. But in the regard of (3.5), this

condition is satisfied if and only if
∫ 0

−1
q (θ) d log r (θ) = −1+2 log 2

2a > e
(
log 2

a + 1
)
. Numer-

ically one can see that this condition is not satisfied if a ≤ 5. Thus for e
3

(
4
√

2− 2
)
≤ a ≤ 5

the condition (3.5) is satisfied, but the condition (2.2) is not.
With respect to the equation (1.2) we can state the following corollary

Corollary 3.4. If r1 > r2 > . . . > rp, aj < 0, for every j = 1, . . . , p, and

p−1∑
k=1

 k∑
j=1

aj

 log
rk+1

rk
<

e

rp

log

rp

∣∣∣∣∣∣
p∑

j=1

aj

∣∣∣∣∣∣
+ 1


then (1.2) is oscillatory.

For nonoscillations we state the following theorem.

Theorem 3.5. Let r ∈ D+ (a, b) and q ∈ NBV such that

q (θ) ≥ 0 for every θ ∈ [−1, a] ,

q (θ) ≤ 0 for every θ ∈ [b, 0] ,

− 1
e r (0)

< q (0) < 0.

If ∫ a

−1

q (θ) dr (θ) +
∫ 0

b

q (θ) dr (θ) ≤
(

1 +
1

log (r (0) |q (0)|)

)
(r (0) |q (0)|)‖r‖/r(0) (3.6)

then (1.1) is nonoscillatory.
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Proof. Recalling (3.3),

F (λ) = λ + exp (−λr (0)) |q (0)|

− λ

[∫ a

−1

exp (−λr (θ)) q (θ) dr (θ) +
∫ 0

b

exp (−λr (θ)) q (θ) dr (θ)
]

,

we have for λ < 0,

F (λ) ≤ λ + exp (−λr (0)) |q (0)|

− λ exp (−λ ‖r‖)
[∫ a

−1

q (θ) dr (θ) +
∫ 0

b

q (θ) dr (θ)
]

.
(3.7)

Recall also the function considered in the proof of the Theorem 3.1, ϕ (λ) = λ +
exp (−λr (0)) |q (0)| , and its absolute minimum ϕ (λ0) = 1

r(0) [log (r (0) |q (0)|) + 1] , at-
tained at λ0 = 1

r(0) log (r (0) |q (0)|) .

Notice that since r (0) |q (0)| < e−1, one has λ0 < 0. Therefore by (3.7) and (3.6) we
obtain

F (λ0) ≤ ϕ (λ0)− λ0 exp (−λ0 ‖r‖)
(

1 +
1

log [r (0) |q (0)|]

)
(r (0) |q (0)|)‖r‖/r(0)

.

Taking into account that

λ0 exp (−λ0 ‖r‖) =
(r (0) |q (0)|)−‖r‖/r(0)

r (0)
log (r (0) |q (0)|)

we have then F (λ0) ≤ 0 and (1.1) is nonoscillatory.

Remark 4. Notice that the assumption − e−1

r(0) < q (0) < 0 implies

r (0) |q (0)| < e−1

and consequently that log (r (0) |q (0)|) + 1 < 0. Thus in the Theorem 3.4 we are in the
complementary of (3.2).

Example 7. Let

q (θ) =


1 + θ, if − 1 ≤ θ ≤ −1

2
,

−1, if − 1
2
≤ θ ≤ 0,

r (θ) =


−θ2 − 3

2
θ +

51
80

, if − 1 ≤ θ ≤ −3
4
,

6
5
, if − 3

4
≤ θ ≤ −1

2
,

−4
5
θ2 − 4

5
θ + 1, if − 1

2
≤ θ ≤ 0.

We have in this case

− 1
2 e

< q (0) = −1 < 0,

q (θ) ≥ 0, for every θ ∈
[
−1,− 3

4

]
q (θ) ≤ 0, for every θ ∈

[
− 1

2 , 0
]
,

and ∫ − 3
4

−1

(1 + θ) d

(
−θ2 − 3

2
θ +

51
80

)
+
∫ 0

− 3
4

q (0) d

(
−4

5
θ2 − 4

5
θ + 1

)

≈ 0.0420 <

(
1 +

1
log 1

2 e

)(
1
2 e

) 6
5

≈ 0.0537.
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Then, by the Theorem 3.5, (1.1) is nonoscilatory.
By setting in the Theorem 3.5, a = b = θ0, the following corollary is obtained.

Corollary 3.6. Let r ∈ D+ (θ0) and q ∈ NBV such that

q (θ) ≥ 0 for every θ ∈ [−1, θ0] ,

q (θ) ≤ 0 for every θ ∈ [θ0, 0] ,

− 1
e r (0)

< q (0) < 0.

If ∫ 0

−1

q (θ) dr (θ) ≤
(

1 +
1

log (r (0) |q (0)|)

)
(r (0) |q (0)|)‖r‖/r(0)

then (1.1) is nonoscillatory.
By choosing θ0 = −1, we obtain an important particular case of the Corollary 3.6.

Corollary 3.7. Let r ∈ D+
d and q ∈ NBV such that q (θ) ≤ 0, for θ ∈ [−1, 0[ and

− 1
e r(0) < q (0) < 0. If

∫ 0

−1

q (θ) dr (θ) ≤
(

1 +
1

log (r (0) |q (0)|)

)
(r (0) |q (0)|)‖r‖/r(0)

,

then (1.1) is nonoscillatory.
With respect to equation (1.2) from (1.3) we can state the following corollary

Corollary 3.8. If r1 > r2 > . . . > rp and − e−1

r(0) <
p∑

j=1

aj < 0,

p−1∑
k=1

 k∑
j=1

aj

 rk+1

rk
≤

1 +
1

log

(
rp

∣∣∣∣∣ p∑
j=1

aj

∣∣∣∣∣
)

rp

∣∣∣∣∣∣
p∑

j=1

aj

∣∣∣∣∣∣


then (1.2) is nonoscillatory.

Example 8. Let be a1 = − 1
8 , a2 = − 1

4 , a3 = − 1
8 and r1 = 1

2 , r2 = 1
4 , r3 = 1

8 . Thus

2∑
k=1

 k∑
j=1

aj

 log
rk+1

rk
= −1

4
log

1
2

≈ −0.173 <

[
1
4

+
1

4 log
(

1
4

)] ≈ 0.0696.

Therefore, by Corollary 3.8, the equation

d
dt

x (t) = −1
8
x

(
t− 1

2

)
− 1

4
x

(
t− 1

4

)
− 1

8
x

(
t− 1

8

)
is nonoscillatory.
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