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LP-THEORY OF THE NAVIER-STOKES FLOW IN THE
EXTERIOR OF A MOVING OR ROTATING OBSTACLE

M. GEISSERT anp M. HIEBER

ABSTRACT. In this paper we describe two recent approaches for the LP-theory of
the Navier-Stokes flow in the exterior of a moving or rotating obstacle.

1. INTRODUCTION
Consider a compact set O C R™, the obstacle, with boundary I" := 0O of class
Ch1. Set Q :=R™\O. For t > 0 and a real n x n-matrix M we set
Qt) == {yt) = ™Mz, 2 € Q) and T(t) := {y(t) = Mz, 2 € T}.

Then the motion past the moving obstacle O is governed by the equations of
Navier-Stokes given by

ow—Aw+w-Vw+Vqg = 0, in Q(t) x Ry,
(1) V-w = 0, in Q(t) x Ry,
w(y,t) = My, on I'(t) x Ry,

'lU(y,O) - 'UJO(y), in (2.

Here w = w(y,t) and ¢(y,t) denote the velocity and the pressure of the fluid,
respectively. The boundary condition on T'(¢) is the usual no-slip boundary condi-
tion. Quite a few articles recently dealt with the equation above, see [2], [3], [4],
5], (6], [8], [10], [11], [15], [16].

In this paper, we describe two approaches to the above equations for the LP-
setting where 1 < p < oo. The basic idea for both approaches is to transfer
the problem given on a domain Q(t) depending on t to a fixed domain. The
first transformation described in the following Section 2 yields additional terms
in the equations which are of Ornstein-Uhlenbeck type. We shortly describe the
techniques used in [15] and [12] in order to construct a local mild solution of (1).

In contrast to the first transformation, the second one, inspired by [17] and [6],
allows to invoke maximal LP-estimates for the classical Stokes operator in exterior
domains and like this we obtain a unique strong solution to (1). This approach is
described in section 3.
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2. MILD SOLUTIONS

In this section we construct mild solutions to the Navier-Stokes problem (1). To
do this we first transform the equations (1) to a fixed domain. Let Q, Q(¢) and
I'(t) be as in the introduction and suppose that M is unitary. Then by the change
of variables # = e~ '™y and by setting v(z,t) = e "™Mw(e™z,t) and p(x,t) =
q(e'™x,t) we obtain the following set of equations defined on the fixed domain §2:

Ov—Av+v-Vo— Mz -Vo+ Mv+Vp = 0, in Q xRy,
2) V-v = 0, in Q xRy,
v(x,t) = Maz, onT'x Ry,

v(z,0) = wp(zr), in .

Note that the coefficient of the convection term Mz - Vu is unbounded, which
implies that this term cannot be treated as a perturbation of the Stokes operator.

This problem was first considered by Hishida in LZ(Q2) for Q C R3 and Mz =
w x x with w = (0,0,1)7 in [15] and [16]. The LP-theory was developed by Heck
and the authors in [12] even for general M.

We will construct mild solutions for wy € LE(S2), p > n, to the problem (2)
with Kato’s iteration (see [18]).

The starting point is the linear problem

Oy —Au— Mz -Vu+ Mu+b-Vu+u-Vb+Vp = 0, in Q xR,
3 V-u = 0, in Q xRy,
(3) u = 0, on I' x Ry,

u(z,0) = wo(z), in€Q,

where b € C2°(2). The additional term b- Vu + u - Vb simplifies the treatment of
the Navier-Stokes problem (see (11) below). We will first show that the solution
of (3) is governed by a Cy-semigroup on L (2). More precisely, let Lg j, be defined
by

LQ’bu = Pgﬁbu
D(Lay) = {ueW?*P(Q)NnW,P(Q)NLE(Q) : Mz Vu e LP(Q)},

where Lyu := Au+ Mz -Vu— Mu+b-Vu+u-Vb. Then the following theorem
is proved in [12].

Theorem 2.1. Let 1 < p < oo and let Q@ C R" be an exterior domain with
Ct1-boundary. Assume that tt M = 0 and b € C2°(Q). Then the operator L
generates a Co-semigroup Tap, on LE(Q).

Sketch of the proof. The proof is devided into several steps. First it is shown
that Lqy is the generator of an Cp-semigroup Tq, on L2(€2). Then a-priori LP-
estimates for T ; are proved. Once we have shown this we can easily define a
consistent family of semigroups T, on LP(€2) for 1 < p < co. In the last step the
generator of Top on L2 (S2) is identified to be Lq p.
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We start by showing that Lq, is the generator of a Cp-semigroup on L2 ().
Choose R > 0 such that suppbU Q¢ C Br(0) = {z € R™: |z| < R}. We then set

D = QQBR+5(O),
Ky, = {ze€Q:R<|z| <R+ 3},
Ky, = {z€Q:R+2<|z|<R+5}

Denote by B; for ¢ € {1,2} Bogovskii’s operator (see [1], [9, Chapter II1.3], [13])
associated to the domain K; and choose cut-off functions ¢, n € C*°(R™) such
that 0 < ¢, n <1 and

{0 SRl L k<R3
=V 1L, ol >R+ 2 M= 0,  |z|>R+4

For f € LP(Q)) we denote by f® the extension of f by 0 to all of R". Then,
since C2%(Q) is dense in L2(Q), f* € L2(R™). Furthermore, we set fP =
nf — B2((Vn)f). Since [ (Vn)f = 0 it follows from [9, Chapter IIL3] that
fP € L(D).

By the perturbation theorem for analytic semigroups there exists wy > 0 such
that for A > w; there exist functions uf and p¥ satisfying the equations

()‘_’Cb)uAD—’_vp? = va in D XRJM
(4) V-ud = 0, in D xRy,
ul = 0, on 0D x Ry.

Moreover, by [14, Lemma 3.3 and Prop. 3.4], there exists ws > 0 such that for
A > wo there exists a function uf? satisfying

5) (A= Lol = fA, in R™ x Ry,
Vouf = 0, in R” x Ry.

For A > max{w;, wa} we now define the operator Uy : LE(2) — L2(Q) by

(6) Urf = puf + (1 = @)uf + Bi(Ve(u —u})),

where uf\% and uf are the functions given above, depending of course on f. By
definition, we have

(7)  Uxfe{veW?P(QnWyP(Q)NLA(Q) : Mz-Vou e L2(Q)}.
Setting Py f = (1 — )p¥, we verify that (U, f, P\f) satisfies

A=L)Uxf+VPf = f+Tnf, mQxRy,
V-Unf = 0, inQxR,,
Unf = 0, on 90 x Ry,

where T is given by

Tnf = —2(Ve)V(uy —uy) — (Ap+ Mz - (Vo)) (uy —uy) + (Ve)py
+ (A=A —Mz-V+M)B (Vo) (ull —u?)).
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It follows from [12, Lemma 4.4] that for a € (0, 5%;), where 5+ 1% = 1, there

? 2p’
exists a strongly continuous function H : (0,00) — L(LE(Q)) satisfying
(8) IH(®) |l gpz o) < Ct*'e™, >0

for some @ > 0 and C > 0 such that A — PnT) is the Laplace Transform of H.
We thus easily calculate

[PoTxlcze@) < CATY A>w.

Therefore, Ry := Uy 272 ((PaTy)7 exists for A large enough and (A — Ly) Ry f = f
for f € L2(2). Since Lq is dissipative in LZ(2), Lq, generates a Cp-semigroup
Tap on L2(Q). Moreover, we have the representation

o

9) Tou(t)f =D Tu(t)f, f€LIQ),
—0
where T, (t fo n_1(t —s)H(s) ds for n € N and

To(t) = sDTR( )+ (=) Top(t)f° + Bi(Vo)(Tr(t) [ = Tpp(t) 7)), t>0.

Here T denotes the semigroup on L2(R™) generated by Lgn o and Tpj denotes
the semigroup on L2 (D) generated by Lp,. Note that A — U, is the Laplace
Transform of Tp. Since the right hand side of the representation (9) is well defined
and exponentially bounded in L () by [12, Lemma 4.6], we can define a family
of consistent semigroups Tq, on LP(Q) for 1 < p < co. Finally, the generator of
T on LP(Q) is Lo, which can be proved by using duality arguments (cf. [12,
Theorem 4.1]). O

Remark 2.2. (a) The semigroup Tq p is not expected to be analytic since, by
[16, Proposition 3.7], the semigroup Tks in R? is not analytic.

(b) As the cut-off function ¢ is used for the localization argument similarly to
[15] the purpose of 7 is to ensure that fp € LE(Q). This is essential to est-
ablish a decay property in A for the pressure PP (cf. [12, Lemma 3.5]) and T).

(¢) The crucial point for a-priori LP-estimates for Tq, on L2 () is the existence
of H satistying (8).

Since LP-L9 smoothing estimates for Tr and T follow from [14, Lemma 3.3
and Prop. 3.4] and [12, Prop. 3.2], the representation of the semigroup Tq ; given
by (9) and estimates for sums of convolutions of this type (cf. [12, Lemma 4.6])
yield the following proposition.

Proposition 2.3. Let 1 <p < q < oo and let Q& C R" be an exterior domain
with CY1-boundary. Assume that tr M = 0 and b € C>(Q). Then there exist
constants C' > 0,w > 0 such that for f € LE(Q)

(@) [T () s < Ct 3G D e fll @, >0,

(b) IVTap(t)fllirie) < Ct2e | fll 20 t>0.
Moreover, for f € LP()

n(l_ 1 1
162 G T, () fllasey + 16 Vs fllzoy — 0, for t—0.
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In order to construct a mild solution to (2) choose ¢ € C*(R™) with 0 < ( <1
and ¢ = 1 near I'. Further let K C R™ be a domain such that suppV{ C K. We
then define b : R™ — R™ by

(10) b(z) :==(Mz — Bg((V()Mx),

where By is Bogovskil’s operator associated to the domain K. Then divb = 0
and b(x) = Mx on I'. Setting u := v — b, it follows that u satisfies

ou—Lyu+Vp = F in Q x (0,7,
(11) Veu = 0 in Q x (0,7,
u = 0 onT'x (0,7),

u(z,0) = wo(x)—blx), inQ,

with V- (up —b) = 0in Q and F = —Ab— Mz - Vb+ Mb+ b - Vb, provided u
satisfies (2). Applying the Helmholtz projection Py to (11), we may rewrite (11)
as an evolution equation in LP(Q):

u’—LQ,bu+PQ(u~Vu) = PoF, 0<t<T,

(12) u(0) = wug—0».

Note that we need the compatibility condition ug(x) -n = Mx - n on 9Q to
obtain uy — b € LE(). In the following, given 0 < T < oo, we call a function
u e C([0,T); LP(2)) a mild solution of (12) if u satisfies the integral equation for
0<t<T

t t

u(t) = Tap(t)(uo — b) — /Tgvb(t —s)Pa(u-Vu)(s) ds + / Top(t — s)PoF(s) ds.
0 0

Then the main result of [12] is the following theorem.

Theorem 2.4. Letn > 2, n < p < q < oo and let Q C R"_ be an exterior
domain with Ct-boundary. Assume that tr M =0 and b € C>(Q) and ug — b €
L2(Q2). Then there exist Ty > 0 and a unique mild solution u of (12) such that

te 3G Du(t) € O ([0, 7o) ; LL(Q),
t 130T u() € 0 (10, 7] L9(9)) -
3. STRONG SOLUTIONS

In this section we construct strong solutions to problem (1) for Q@ C R™, n > 2 and
tr M = 0. The main difference to the method presented in the previous section
is another change of variables. Indeed, we construct a change of variables which
coincides with a simple rotation in a neighborhood of the rotating body but it
equals to the identity operator far away from the rotating body. More precisely,
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let X(-,t) : R™ — R™ denote the time dependent vector field satisfying
0X
E(yﬂf) = —b(X(y,t)), yeR" t>0,
X(y,0) =y, y € R",

where b is as in (10).

the inverse of X (-,t) by Y (-,

Similarly to [6,
C*°-diffeomorphism form € onto Q(t) and X € C*°([0, o0
t). Then, Y € C>([0,

Lemma 3.2], the vector field X(-,¢) is a
) x R™). Let us denote
00) X R™). Moreover, it can be

shown that for any T' > 0 and |a| 4+ k > 0 there exists Cj o7 > 0 such that

8k leY

(13) sup ﬁ@

yERM 0<t<T

X(y,t)‘+

Setting

v(z,t) = Jx (Y(z,

sup
zER™,0<t<T

t),w(Y (z,1),1),

o o
Otk dze

Y(xa t) ‘ < Ok,a,To .

e, t>0,

where Jx denotes the Jacobian of X (-,¢) and

p(z,t)

= q(Y(.’L‘,t), t),

reQ, t>0,

similarly to [6, Prop. 3.5] and [17], we obtain the following set of equations which

are equivalent to (1).

O — Ly + Mv+Nv+Gp

- - 0X,
+ 2 <F3kw+
ik

= O7 iHQXRJ,_,
= 0, in Q xRy,
= Mz, on ' x Ry,
= wp(x), in €.

; - Ov;
2 2 kl]:\ J
xk> * Z Ik Dy

i
Ik vjvg,

0X; 0%Y,
vy,
aIk ax]()t J

Y}, 0Yy,

Z ox; 836] an

V-wv
14 v(a, 1)
v(zx,0)
Here "o
e = 3 o (o5
J,k=1
- 0
+ ) <—
joked=1 Oy,
n 8’1}1 n
(./\[U)Z = Z’Uja ; +‘
Jj=1 7,k=1
0X; Ov;
(MU)Z - Z 315 8:z:j
Jj=1
" Op
_ ij
(gp)z = Zg a$]
Jj=1
J — Yk 5yk

Kl Jgil
8xj

_|_

893‘1
8%—

3gz‘j
+ ail ) '
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The obvious advantage of this approach is that we do not have to deal with an
unbounded drift term since all coefficients appearing in £, N, M and G are smooth
and bounded on finite time intervals by (13). However, we have to consider a non-
autonomous problem. Setting u = v — b, we obtain the following problem with
homogeneous boundary conditions which is equivalent to (14).

Ou—Lu+ Mu+Nu+Bu+Gp = F, in Qx Ry,
V-u = 0 in  x R+,
(15) u = 0, onI' x Ry,
u(z,0) = wo(z)—b(z), in Q.
Here, b, o, .
(Bu)i =Y (uj% +b; am) +2 ) Thuibs,  Fy = Lb— Mb—Nb.
j=1 J J 3.k=1

Since g% is smooth and g% (-,0) = ¢;; by definition, it follows from (13) that
(16) lg? (1) = bijllL(@) = 0, t—0.

In other words, L is a small perturbation of A and G is a small perturbation of V
for small times ¢. This motivates to write (15) in the following form.

Oou—Au+Vp = F(u,p), in Q xRy,

V U = 0, in Q x RJ’_,

(17) u = 0, on I' x Ry,
U((E,O) - ’wo(fﬂ) - b(iL’), in Qv

where F(u,p) == (L — A)u — Mu — Nu+ (V — G)p — Bu+ F,. We will use
maximal LP-regularity of the Stokes operator and a fixed point theorem to show
the existence of a unique strong solution (u,p) of (15). More precisely, let

XBT .= WhP(0,T; LY(Q)) N LP(0,T; D(A,)) x LP(0,T; WhP(Q)),

where D(A,) := W24(Q)NW, Q)N LL(Q) is the domain of the Stokes operator.
Then, by maximal LP-regularity of the Stokes operator, Hélder’s inequality and
Sobolev’s embedding theorems ® : X229 — X ®((a,p)) := (u,p) where (u,p) is
the unique solution of

ou—Au+Vp = F(u,p), in Q x (0,7)
V-ou = 0, in Qx (0,7),
u = 0, on T x (0,7),

u(z,0) = wo(z)—b(zx), in €,

is well-defined for 1 < p, ¢ < oo with 2"—(1 + % < % and T" > 0. Here, the restriction
on p and ¢ comes from the nonlinear term .

Finally, let X7'5 := {(u,p) € X" ¢ [[(u, p) = (@, D) [ xp:a < 6,u(0) = wo—Db} with
(4,p) = ®(®(0,0)). Then by (16), Holder’s inequality and Sobolev’s embedding
theorems, it can be shown that for small enough 6 > 0 and T" > 0, \I/\X;:% is a
contraction.

We summarize our considerations in the next theorem which is proved in [7].

Note that the cases n = 2,3 and p = ¢ = 2 were already proved in [6].
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Theorem 3.1. Let 1 < p,q < oo such that 2—7; + % < % and let Q@ C R™ be an

exterior domain with C*'-boundary. Assume that tr M = 0 and that wy — b €

(LL(SY),D(Ag))y_1 . Then there exist T >0 and a unique solution (u,p) € X7
5

of problem (15).
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