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Abstract. In 1990, Gérard-Tahara [2] introduced the Briot-Bouquet type
partial differential equation t∂tu = F (t, x, u, ∂xu), and they determined the
structure of singular solutions provided that the characteristic exponent
ρ(x) satisfies ρ(0) �∈ {1, 2, . . . }. In this paper the author determines the
structure of singular solutions in the case ρ(0) ∈ {1, 2, . . . }.
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1 Introduction

In this paper, we will study the following type of nonlinear singular first order
partial differential equations:

t∂tu = F (t, x, u, ∂xu) (1)

where (t, x) = (t, x1, . . . , xn) ∈ Ct ×Cn
x , ∂xu = (∂1u, . . . , ∂nu), ∂t =

∂

∂t
, ∂i =

∂

∂xi
for i = 1, . . . , n, and F (t, x, u, v) with v = (v1, . . . , vn) is a function defined in a
polydisk 8 centered at the origin of Ct × Cn

x × Cu × Cn
v . Let us denote 80 =

8∩ {t = 0, u = 0, v = 0}.
The assumptions are as follows:

(A1) F (t, x, u, v) is holomorphic in 8,
(A2) F (0, x, 0, 0) = 0 in 80,

(A3)
∂F

∂vi
(0, x, 0, 0) = 0 in 80 for i = 1, . . . , n.

(2)

This is the final form of the paper.
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Definition 1. ([2], [3]) If the equation (1) satisfies (A1), (A2) and (A3) we say
that the equation (1) is of Briot-Bouquet type with respect to t.

Definition 2. ([2], [3]) Let us define

ρ(x) =
∂F

∂u
(0, x, 0, 0), (3)

then the holomorphic function ρ(x) is called the characteristic exponent of the
equation (1).

Let us denote by

1. R(C\{0}) the universal covering space of C\{0},
2. Sθ = {t ∈ R(C\{0}); | arg t| < θ},
3. S (ε(s)) = {t ∈ R(C\{0}); 0 < |t| < ε(arg t)} for some positive-valued function
ε(s) defined and continuous on R,

4. DR = {x ∈ Cn; |xi| < R for i = 1, . . . , n},
5. C{x} the ring of germs of holomorphic functions at the origin of Cn.

Definition 3. We define the set Õ+ of all functions u(t, x) satisfying the following
conditions;
1. u(t, x) is holomorphic in S (ε(s))×DR for some ε(s) and R > 0,
2. there is an a > 0 such that for any θ > 0 and any compact subset K of DR

max
x∈K

|u(t, x)| = O (|t|a) as t→ 0 in Sθ. (4)

We know some results on the equation (1) of Briot-Bouquet type with respect
to t. We concern the following result. Gérard R. and Tahara H. studied in [2] the
structure of holomorphic and singular solutions of the equation (1) and proved the
following result;

Theorem 4 (Gérard R. and Tahara H.). If the equation (1) is Briot-Bouquet
type and ρ(0) �∈ N∗ = {1, 2, 3, . . .} then we have;
(1) (Holomorphic solutions) The equation (1) has a unique solution u0(t, x) holo-
morphic near the origin of C×Cn satisfying u0(0, x) ≡ 0.
(2) (Singular solutions) Denote by S+ the set of all Õ+-solutions of (1).

S+ =
{
{u0(t, x)} when Reρ(0) ≤ 0,
{u0(t, x)} ∪ {U(ϕ); 0 �= ϕ(x) ∈ C{x}} when Reρ(0) > 0, (5)

where U(ϕ) is an Õ+-solution of (1) having an expansion of the following form:

U(ϕ) =
∑
i≥1

ui(x)ti +
∑

i+2j≥k+2,j≥1

ϕi,j,k(x)ti+jρ(x)(log t)k, ϕ0,1,0(x) = ϕ(x). (6)
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In the case ρ(0) ∈ N∗, Yamane [7] showed that the equation (1) has a holo-
molphic solution in a region {(t, x) ∈ C×Cn; |x| < c|t|d 7 1} for some c > 0 and
d > 0, but the solution is not in S+.

The purpose of this paper is to determine S+ in the case ρ(0) ∈ N∗.

The following main result of this paper is;

Theorem 5. If the equation (1) is Briot-Bouquet type and if ρ(0) = N ∈ N∗ and
ρ(x) �≡ ρ(0), then

S+ = {U(ϕ); ϕ(x) ∈ C{x}} , (7)

where U(ϕ) is an Õ+-solution of (1) having an expansion of the following form:

U(ϕ) = u01(x)t+ ue00 (x)φN (t, x) +
∑

i+|β|≥2,|β|<∞,

|β|∗≤i+|β|−2

uβi (x)t
iΦβN

+ w0
0,1,0(x)t

ρ(x) +
∑

i+j+|β|≥2,

|β|<∞,j≥1,

|β|∗≤i+j+|β|−2

∑
k≤i+|β|0+|β|1

+2(j−1)

wβ
i,j,k(x)t

i+jρ(x){log t}kΦβN ,

where u0N(x) ≡ 0, w0
0,1,0(x) = ϕ(x) is arbitrary holomorphic function and the other

coefficients uβi (x), w
β
i,j,k(x) are holomorphic functions determined by w0

0,1,0(x) and
defined in a common disk, and

l = (l1, . . . , ln) ∈ Nn, |l| = l1 + · · ·+ ln, β = (βl ∈ N; l ∈ Nn),

|β| =
∑
|l|≥0

βl, |β|p =
∑
|l|=p

βl for p ≥ 0, |β|∗ =
∑
|l|≥2

(|l| − 1)βl,

ΦβN =
∏
|l|≥0

(
∂lxφN
l!

)βl

, ∂lx = ∂l11 · · ·∂lnn , φN (t, x) =
tρ(x) − tN
ρ(x)−N .

The following lemma will play an important role in the proof of Theorem 5.
At first, we define some notations. We denote for l ∈ Nn, el = (βk; k ∈ Nn)

with βl = 1 and βk = 0 for k �= l and for p ∈ N, e(p) = (i1, . . . , in) with ip = 1
and iq = 0 for q �= p, and denote that l1 < l0 is defined by |l1| < |l0| and l1i ≤ l0i
for i = 1, . . . , n.

Lemma 6. Let ρ(x), φN and ΦβN be in Theorem 5. Then we have;

1. ∂pΦ
β
N =

∑
|l|≥0 βl(lp + 1)Φβ−el+el+e(p)

N for i = 1, . . . , n,
2. t∂tφN = ρ(x)φN + tN ,

3. t∂tΦ
β
N = |β|ρ(x)ΦβN + β0t

NΦβ−e0N +
∑

|l0|≥1

∑
l1<l0 βl0

∂l
0−l1
x ρ(x)
l0−l1 Φ

β−el0+el1
N .

Proof.
1. By ∂p(∂lxφN/l!)

βl = βl(∂lxφN/l!)
βl−1∂

l+e(p)
x φN/l!, we have the result 1.
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2. By t∂tφN = (ρ(x)tρ(x) −NtN )/(ρ(x)−N), we have the result 2.
3. By 2, we have

t∂t

(
∂lxφN
l!

)βl

= βl

(
∂lxφN
l!

)βl−1
∂lx(ρ(x)φN + tN )

l!
. (8)

Therefore we have

t∂t

(
∂lxφN
l!

)βl

=

=

β0ρ(x)φ
β0
N + β0t

Nφβ0−1
N if l = 0

βlφ(x)
(
∂lxφN
l!

)βl
+
∑

0≤l1<l βl
∂l−l1
x ρ(x)
(l−l1)!

∂l
1
x φN
l1!

(
∂lxφN
l!

)βl−1

if |l| > 0.

Hence we have the desired result. Q.E.D.

2 Construction of formal solutions in the case ρ(0) = 1

By [2] (Gérard-Tahara), if the equation (1) is of Briot-Bouquet type with respect
to t, then it is enough to consider the following equation:

Lu = t∂tu− ρ(x)u = a(x)t+G2(x)(t, u, ∂xu) (9)

where ρ(x) and a(x) are holomorphic functions in a neighborhood of the origin, and
the function G2(x)(t,X0, X1, . . . , Xn) is a holomorphic function in a neighborhood
of the origin in Cn

x ×Ct ×CX0 ×CX1 × · · · ×CXn with the following expansion:

G2(x)(t,X0, X1, . . . , Xn) =
∑

p+|α|≥2

ap,α(x)tp{X0}α0{X1}α1 · · · {Xn}αn (10)

and we may assume that the coefficients {ap,α(x)}p+|α|≥2 are holomorphic func-
tions on DR for a sufficiently small R > 0. We put Ap,α(R) := maxx∈DR |ap,α(x)|
for p+ |α| ≥ 2. Then for 0 < r < R∑

p+|α|≥2

Ap,α(R)
(R− r)p+|α|−2

tpXα0
0 Xα1

1 × · · · ×Xαn
n (11)

is convergent in a neighborhood of the origin.
In this section, we assume ρ(0) = 1 and ρ(x) �≡ 1 and we will construct formal

solutions of the equation (9).

Proposition 7. If ρ(0) = 1 and ρ(x) �≡ 1, the equation (9) has a family of formal
solutions of the form:

u = ue00 (x)φ1 +
∑
m≥2

∑
i+|β|=m
|β|∗≤m−2

uβi (x)t
iΦβ1 (12)

+ w0
0,1,0(x)t

ρ(x) +
∑
m≥2

∑
i+j+|β|=m

j≥1,|β|∗≤m−2

∑
k≤i+|β|0+|β|1

+2(j−1)

wβ
i,j,k(x)t

i+jρ(x){log t}kΦβ1
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where w0
0,1,0(x) is an arbitrary holomorphic function and the other coefficients

uβi (x), w
β
i,j,k(x) are holomorphic functions determined by w0

0,1,0(x) and defined in
a common disk.

Remark 8. By the relation |β|∗ ≤ m− 2 in summations of the above formal solu-
tion, we have βl = 0 for any l ∈ Nn with |l| ≥ m.

We define the following two sets Um and Wm for m ≥ 1 to prove Proposition 7.

Definition 9. We denote by Um the set of all functions um of the following forms:

u1 = u01(x)t + ue00 (x)φ1,

um =
∑

i+|β|=m
|β|∗≤m−2

uβi (x)t
iΦβ1 for m ≥ 2, (13)

and denote by Wm the set of all functions wm of the following forms:

w1 = w0
0,1,0(x)t

ρ(x),

wm =
∑

i+j+|β|=m
j≥1,|β|∗≤m−2

∑
k≤i+|β|0+|β|1

+2(j−1)

wβ
i,j,k(x)t

i+jρ(x){log t}kΦβ1 for m ≥ 2

where uβi (x), w
β
i,j,k(x) ∈ C{x}.

We can rewrite the formal solution (12) as follows:

u =
∑
m≥1

(um + wm) where um ∈ Um, wm ∈ Wm. (14)

Let us show important relations of um and wm for m ≥ 2. By Lemma 6, we
have

∂pum =
∑

i+|β|=m
|β|∗≤m−2

{
∂pu

β
i (x)t

iΦβ1 +
m−1∑
|l|=0

(lp + 1)βlu
β
i (x)t

iΦ
β−el+el+e(p)
1

}
,

∂pwm =
∑

i+j+|β|=m
j≥1,|β|∗≤m−2

∑
k≤i+|β|0+|β|1

+2(j−1)

{
∂pw

β
i,j,k(x)t

i+jρ(x){log t}kΦβ1 (15)

+j∂pρ(x)w
β
i,j,k(x)t

i+jρ(x){log t}k+1Φβ1

+
m−1∑
|l|=0

(lp + 1)βlw
β
i,j,k(x)t

i+jρ(x){log t}kΦβ−el+el+e(p)
1

}
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for p = 1, . . . , n, and we have

Lum =
∑

i+|β|=m
|β|∗≤m−2

{
{i+ (|β| − 1)ρ(x)}uβi (x)tiΦ

β
1 + β0u

β
i (x)t

i+1Φβ−e01 (16)

+
m−1∑
|l0|=1

∑
l1<l0

βl0
∂l

0−l1
x ρ(x)
(l0 − l1)! u

β
i (x)t

iΦ
β−el0+el1
1

}
,

Lwm =
∑

i+j+|β|=m
j≥1,|β|∗≤m−2

∑
k≤i+|β|0+|β|1

+2(j−1)

{
{i+ (j + |β| − 1)ρ(x)}

×wβ
i,j,k(x)t

i+jρ(x){log t}kΦβ1
+ kwβ

i,j,k(x)t
i+jρ(x){log t}k−1Φβ1 + β0w

β
i,j,k(x)t

i+jρ(x)+1{log t}kΦβ−e01

+
m−1∑
|l0|=1

∑
l1<l0

βl0
∂l

0−l1
x ρ(x)
(l0 − l1)! w

β
i,j,k(x)t

i+jρ(x){log t}kΦβ−el0+el11

}
.

We show two lemma.

Lemma 10. If um ∈ Um and wm ∈Wm, then Lum ∈ Um and Lwm ∈Wm.

Proof. We prove Lum ∈ Um. We will see all powers of each terms in (16). For the
second term in (16), we have i+1+|β−e0| = i+|β| = m and [β−e0] = [β] ≤ m−2.

For the third term, we have i+|β−el0+el1 | = i+|β| = m and [β−el0+el1 ] = [β]
(if |l0| = 1), = [β]− (|l0| − 1) (if |l0| > 1 and |l1| ≤ 1), = [β]− |l0|+ |l1| (if |l0| > 1
and |l1| > 1). Further by l1 < l0, we have [β − el0 + el1 ] ≤ [β] ≤ m− 2. Hence we
have Lum ∈ Um.

We can prove Lwm ∈Wm as Lum ∈ Um, and we omit the details. Q.E.D.

Lemma 11. If um ∈ Um and wm ∈ Wm, then the following relations hold by the
relation (15) for i, j = 1, . . . , n
1. a(x)Um ⊂ Um and a(x)Wm ⊂Wm for any holomorphic function a(x),
2. tUm, φ1Um ⊂ Um+1 and tρ(x)Um, tWm, tρ(x)Wm, φ1Wm ⊂Wm+1,
3. um × un, ∂ium × ∂jun, ∂ium × un ∈ Um+n,
4. wm × wn, ∂iwm × ∂jwn, ∂iwm × wn, ∈Wm+n,
5. um × wn, ∂ium × wn, um × ∂jwn, ∂ium × ∂jwn ∈Wm+n.

Proof. This is verified by the relations (15) and (16) but tedious calculations. We
may omit the details. Q.E.D.

Let us show that um and wm are determined inductively on m ≥ 1. By substi-
tuting

∑
m≥1

(um + wm) into (9), we have

(1 − ρ(x))u01(x) + ue00 (x) = a(x), (17)
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for m ≥ 2

Lum =
∑

p+|α|≥2

p+|mn|=m

ap,α(x)tp
α0∏

h0=1

um0,h0

n∏
j=1

αj∏
hj=1

∂jumj,hj
, (18)

Lwm =
∑

p+|α|≥2

p+|mn|=m

ap,α(x)tp
α0∏

h0=1

(um0,h0
+ wm0,h0

)
n∏

j=1

αj∏
hj=1

∂j(umj,hj
+ wmj,hj

)

−
∑

p+|α|≥2

p+|mn|=m

ap,α(x)tp
α0∏

h0=1

um0,h0

n∏
j=1

αj∏
hj=1

∂jumj,hj
, (19)

where |mn| =
∑n

i=0mi(αi) and mi(αi) = mi,1 + · · ·+mi,αi for i = 0, 1, . . . , n.
We take any holomorphic function ϕ(x) ∈ C{x} and put w0

0,1,0(x) = ϕ(x), and
by (17), we put u01(x) ≡ 0 and ue00 (x) = a(x).

For m ≥ 2, let us show that um and wm are determined by induction. By
Lemma 11, the right side of (18) belongs to Um and the right side of (19) belongs to
Wm. Further by mj,hj ≥ 1, we have mj,hj < m for hj = 1, . . . , αj and j = 0, . . . , n.
Then for m ≥ 2, we compare with the coefficients of tiΦβ1 and ti+jρ(x){log t}kΦβ1
respectively for (18) and (19), then put

{i+ (|β| − 1)ρ(x)}uβi (x) (20)

+ (β0 + 1)uβ+e0i−1 (x) +
m−1∑
|l0|=1

∑
0≤l1<l0

(βl0 + 1)
∂l

0−l1
x ρ(x)
(l0 − l1)! u

β+el0−el1
i (x)

= fβi ({ap,α}2≤p+|α|≤m, {u
β′
i′ (x)}i′+|β′|<m)

and

{i+ (j + |β| − 1)ρ(x)}wβ
i,j,k(x) + (k + 1)wβ

i,j,k+1(x)

+ (β0 + 1)wβ+e0
i−1,j,k(x) +

m−1∑
|l0|=1

∑
0≤l1<l0

(βl0 + 1)
∂l

0−l1
x ρ(x)
(l0 − l1)! w

β+el0−el1
i,j,k (x) (21)

= gβi,j,k({ap,α}2≤p+|α|≤m, {u
β′
i′ (x)}i′+|β′|<m, {wβ′

i′,j′,k′(x)}i′+j′+|β′|<m).

We define an order for the multi indices (i, β) and (i, j, k, β) to show that uβi (x)
and wβ

i,j,k(x) are determined by (20) and (21).

Definition 12. The relation (i′, β′) < (i, β) is defined by the following orders;
1. i′ + |β′| < i+ |β|.
2. If i′ + |β′| = i+ |β|, then i′ < i.
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3. If i′ + |β′| = i+ |β| and i′ = i, then |β′|0 < |β|0.
4. If i′ + |β′| = i+ |β|, i′ = i, |β′|0 = |β|0, . . . , |β′|l = |β|l, then |β′|l+1 < |β|l+1.

The relation (i′, j′, k′, β′) < (i, j, k, β) is defined by the following orders;
1. i′ + j′ + |β′| < i+ j + |β|.
2. If i′ + j′ + |β′| = i+ j + |β|, then i′ < i.
3. If i′ + j′ + |β′| = i+ j + |β| and i′ = i, then j′ < j.
4. If i′ + j′ + |β′| = i+ j + |β|, i′ = i and j′ = j, then |β′|0 < |β|0.
5. If i′ + j′ + |β′| = i + j + |β|, i′ = i, j′ = j, |β′|0 = |β|0, . . . , |β′|l = |β|l, then
|β′|l+1 < |β|l+1.
6. If (i′, j′, β′) = (i, j, β), then k′ > k.

For m ≥ 2, we have i+(|β| − 1)ρ(x) �= 0 and i+(j+ |β| − 1)ρ(x) �= 0 by ρ(0) = 1.
Therefore all the coefficients uβi (x) and wβ

i,j,k(x) are determined in the order of
Definition 12. Hence we obtain Proposition 7. Q.E.D.

3 Convergence of the formal solutions in the case ρ(0) = 1

In this section, we show that the formal solution (12) converges in Õ+.

Proposition 13. Let γ satisfy 0 < γ < 1 and let λ be sufficiently large. Then for
any sufficiently small r > 0 we have the following result;

For any θ > 0 there is an ε > 0 such that the formal solution (12) converges
in the following region:

{(t, x) ∈ Ct ×Cn
x ; |η(t, λ)t| < ε, |η(t, λ)2tρ(x)| < ε,

|η(t, λ)tγ | < ε, t ∈ Sθ and x ∈ Dr} ,

where η(t, λ) = max {|(log t)/λ| , 1} .

In this section, we put wβ
i,0,0(x) := uβi (x) and wβ

i,0,k(x) ≡ 0 for k ≥ 1 in the
formal solution (12). Then the formal solution (12) is as follows:

u = we0
0,0,0(x)φ1 + w0

0,1,0(x)t
ρ(x)

+
∑
m≥2

∑
i+j+|β|=m
|β|∗≤m−2

∑
k≤i+|β|0+|β|1

+2(j−1)

wβ
i,j,k(x)t

i+jρ(x){log t}kΦβ1 . (22)

Let us define the following set Vm for (22).

Definition 14. We denote by Vm the set of all the functions vm of the following
forms:

v1 = we0
0,0,0(x)φ1 + w0

0,1,0(x)t
ρ(x), (23)

vm =
∑

i+j+|β|=m
|β|∗≤m−2

∑
k≤i+|β|0+|β|1

+2(j−1)

wβ
i,j,k(x)t

i+jρ(x){log t}kΦβ1 for m ≥ 2.
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We define the following estimate for the function vm.

Definition 15. For the function (23), we define

||v1||r,c,λ = ||v1||r,c :=
||we0

0,0,0||r
c

+ ||w0
0,1,0||r, (24)

||vm||r,c,λ :=
∑

i+j+|β|=m
|β|∗≤m−2

∑
k≤i+|β|0+β1

+2(j−1)

||wβ
i,j,k||rλk

c<β>
for m ≥ 2

for c > 0 and λ > 0, where

||wβ
i,j,k||r = max

x∈Dr

|wβ
i,j,k(x)| and < β >=

∑
|l|≥0

(|l|+ 1)βl. (25)

We will make use of

Lemma 16. For a holomorphic function f(x) on DR, we have

||∂αx f ||R0 ≤
α!

(R −R0)|α|
||f ||R for 0 < R0 < R. (26)

Proof. By Cauchy’s integral formula, we have the desired result, and we omit the
details. Q.E.D

Lemma 17. If a holomorphic function f(x) on DR satisfies

||f ||R0 ≤
C

(R− r)p for 0 < r < R (27)

then we have

||∂if ||R0 ≤
Ce(p+ 1)
(R − r)p+1

for 0 < r < R, i = 1, . . . , n. (28)

For the proof, see Hörmander ([5]lemma 5.1.3)

Let us show the following estimate for the function Lvm.

Lemma 18. Let 0 < R0 < R. Then there exists a positive constant σ such that
for m ≥ 2, if vm ∈ Vm we have

||Lvm||r,c,λ ≥
σ

2
m||vm||r,c,λ for 0 < r ≤ R0 (29)

for sufficiently small c > 0 and sufficiently large λ > 0.
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Proof. Let us give an estimate the second, the third and the fourth term in the
right side of the second relation in (16) respectively.

For the second term, since k ≤ i+ |β|0+ |β|1+2(j−1) ≤ 2m by i+ j+ |β| = m
we have

T2 :=
∑

i+j+|β|=m
|β|∗≤m−2

∑
k≤i+|β|0+|β|1

+2(j−1)

k
||wβ

i,j,k+1||rλk−1

c<β>
≤ 2m

λ
||vm||r,c,λ. (30)

For the fourth term, we have

T4 :=
∑

i+j+|β|=m
|β|∗≤m−2

∑
k≤i+|β|0+|β|1

+2(j−1)

m−1∑
|l0|=1

∑
l1<l0

βl0

(l0 − l1)!
||∂l0−l1x ρwβ

i,j,k||rλk

c<β−el0+el1>
(31)

≤
∑

i+j+|β|=m
|β|∗≤m−2

∑
k≤i+|β|0+|β|1

+2(j−1)

m−1∑
|l0|=1

∑
l1<l0

c|l
0|−|l1|βl0

||∂l0−l1x ρ||R0

(l0 − l1)!
||wβ

i,j,k||rλk

c<β>
.

By Lemma 16, we have

∑
l1<l0

c|l
0|−|l1| ||∂l

0−l1
x ρ||R0

(l0 − l1)! ≤
∑
l1<l0

(
c

R −R0

)|l0|−|l1|
||ρ||R (32)

≤ cn||ρ||R
R−R0

(
R−R0

R −R0 − c

)n

for sufficiently small c > 0. Therefore by (31) and (32), we have

T4 ≤ κ(c)
∑

i+j+|β|=m
|β|∗≤m−2

∑
k≤i+|β|0+|β|1

+2(j−1)

m−1∑
|l0|=1

βl0
||wβ

i,j,k||rλk

c<β>
(33)

where κ(c) := cn
R−R0

( R−R0
R−R0−c)

n||ρ||R.
For the third term, we have

T3 : =
∑

i+j+|β|=m
|β|∗≤m−2

∑
k≤i+|β|0+|β|1

+2(j−1)

β0
||wβ

i,j,k||rλk

c<β−e0>

=
∑

i+j+|β|=m
|β|∗≤m−2

∑
k≤i+|β|0+|β|1

+2(j−1)

cβ0
||wβ

i,j,k||rλk

c<β>
.



Singular Solutions of the Briot-Bouquet Type 453

Therefore, since cβ0 + κ(c)
∑m−1

|l0|=1 βl0 ≤ σ
3m by the conditions κ(0) = 0 and

i+ j + |β| = m ≥ 2 for sufficiently small c > 0 and some σ > 0 we have

T2 + T3 + T4 ≤
(
2m
λ

+
σ

3
m

)
||vm||r,c,λ. (34)

Further we have |i + (j + |β| − 1)ρ(x)| ≥ σm by the condition ρ(0) = 1 and
i+ j + |β| = m ≥ 2. Therefore we have

||Lvm||r,cλ ≥
(
σm− 2m

λ
− σ

3
m

)
||vm||r,c,λ. (35)

Hence for sufficiently small c > 0 and sufficiently large λ > 0, we obtain the desired
result. Q.E.D.

Let us estimate the function ∂ivm.

Definition 19. For the function vm ∈ Vm we define

Dpvm :=
∑

i+j+|β|=m
|β|∗≤m−2

∑
k≤i+|β|0+|β|1

+2(j−1)

∂pw
β
i,j,k(x)t

i+jρ(x){log t}kΦβ1 (36)

for p = 1, . . . , n.

Lemma 20. If vm ∈ Vm, then for i = 1, . . . , n, we have

||∂ivm||r,c,λ ≤ ||Divm||r,c,λ+c0λm||vm||r,c,λ+
3m− 2
c

||vm||r,c,λ for 0 < r ≤ R0.

(37)

Proof. We have∑
|l|≥0

(lp + 1)βl ≤
m−1∑
|l|=0

(|l|+ 1)βl = 2|β|+ [β] ≤ 3m− 2. (38)

We put c0 = max
i=1,...,n

{||∂iρ||R0}, and by the relations (15), (38) and j ≤ m we ob-

tain the desired estimate. Q.E.D.

Therefore by the relations (18), (19) and Lemma 18, 20, we have the following
lemma.

Lemma 21. If u =
∑
m≥1

vm is a formal solution of the equation (9) constructing

in Section 2, we have the following inequality for vm (m ≥ 2):

||Lvm||r,c,λ

≤
∑

p+|α|≥2

p+|mn|=m

||ap,α||r
α0∏

h0=1

||vm0,h0
||r,c,λ

×
n∏
i=1

αi∏
hi=1

{||Divmi,hi
||r,c,λ + c0λmi,hi ||vmi,hi

||r,c,λ +
3mi,hi − 2

c
||vmi,hi

||r,c,λ}.
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Let us define a majorant equation to show that the formal solution (22) con-
verges.
We take A1 so that

||we0
0,0,0||R
c

+ ||w0
0,1,0||R ≤ A1,

||∂iwe0
0,0,0||R
c

+ ||∂iw0
0,1,0||R ≤ A1

for i = 1, . . . , n.
Then we consider the following equation:

σ

2
Y =

σ

2
A1t1 (39)

+
1

R− r
∑

p+|α|≥2

Ap,α(R)
(R− r)p+|α|−2

t1
pY α0

n∏
i=1

(
eY + c0λY +

3
c
Y

)αi

.

The equation (39) has a unique holomorphic solution Y = Y (t1) with Y (0) = 0 at
(Y, t1) = (0, 0) by implicit function theorem. By an easy calculation, the solution
Y = Y (t1) has the following form:

Y =
∑
m≥1

Ymt1
m with Ym =

Cm

(R − r)m−1
(40)

where Y1 = C1 = A1 and Cm ≥ 0 for m ≥ 1.
Then we have;

Lemma 22. For m ≥ 1, we have

m||vm||r,c,λ ≤ Ym for 0 < r ≤ R0 (41)

||Divm||r,c,λ ≤ eYm for 0 < r ≤ R0, (42)

for i = 1, . . . , n.

Proof. By A1 = Y1 and the definition of A1, (41) and (42) hold for m = 1.
By induction onm, let us show that (41) and (42) hold form ≥ 2. By substitut-

ing the solution Y =
∑

m≥1 Ymt1
m into the equation (39), we have the following

relation:

σ

2
Ym =

1
R− r

∑
p+|α|≥2

p+|mn|=m

Ap,α(R)
(R− r)p+|α|−2

α0∏
h0=1

Ym0,h0
(43)

×
n∏
i=1

αi∏
hi=1

{
eYmi,hi

+ c0λYmi,hi
+

3
c
Ymi,hi

}
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for m ≥ 2. Therefore if we assume that (41) and (42) hold for mi,hi < m, by (43),
Lemma 18 and Lemma 21 we obtain

σ

2
m||vm||r,c,λ ≤ (R− r)σ

2
Ym. (44)

Therefore we have
m||vm||r,c,λ ≤ (R− r)Ym ≤ Ym. (45)

The relation (45) is rewrited as follows:

m
∑

i+j+|β|=m
|β|∗≤m−2

∑
k≤i+|β|0+|β|1

+2(j−1)

||wβ
i,j,k||rλk

c<β>
≤ Cm

(R− r)m−2
. (46)

By (46) and Lemma 17, we have

m||Divm||r,c,λ ≤
(m− 1)eCm

(R − r)m−1
(47)

for i = 1, . . . , n and 0 < r < R < 1. Therefore we have

||Divm||r,c,λ ≤
eCm

(R− r)m−1
= eYm. (48)

Hence (41) and (42) hold for m ≥ 2. Q.E.D.

Let us show that the formal solution (22) converges by using (41) in Lemma
22. We put (22) as follows:

u = ue00 (x)φ1 + w0
0,1,0(x)t

ρ(x)

+
∑
m≥2

∑
i+j+|β|=m
|β|∗≤m−2

∑
k≤i+|β|0+|β|1

+2(j−1)

wβ
i,j,k(x)λ

k

c<β>
ti+jρ(x)

(
log t
λ

)k

Ψβ
1 ,

where

Ψβ
1 =

∏
|l|≥0

(
c|l|+1 ∂

l
xφ1
l!

)βl

. (49)

Firstly let us estimate (49). For ||φ1||R, we have the following lemma.

Lemma 23. For any γ with 0 < γ < 1, there is an R > 0 such that

||φ1||R = O (|t|γ) as t→ 0 in Sθ (50)

holds for any θ > 0.
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Proof. We put

φ1 = tγ
tρ0(x)+α − tα

ρ0(x)
(51)

with α+ γ = 1 and ρ0(x) = ρ(x)− 1. Then we can take R > 0 with

||ρ0||R < α (52)

by ρ0(0) = 0. Therefore we have∣∣∣∣∣∣∣∣ tρ0(x)+α − tα
ρ0(x)

∣∣∣∣∣∣∣∣
R

≤ | log t||t|α−||ρ0||R → 0 as t→ 0 in Sθ (53)

for and any θ > 0. Hence we have the desired result. Q.E.D.
By Lemma 23, there exists a positive constant c1 such that

||φ1||R ≤ c1|t|γ in Sθ. (54)

By Lemma 16 and (54), for |l| ≥ 0 we have

||∂lxφ1||R0 ≤
l!

(R−R0)|l|
||φ1||R ≤

l!c1
(R−R0)|l|

|t|γ for 0 < R0 < R. (55)

Therefore, we have

||Ψβ
1 ||R0 ≤

∏
|l|≥0

(
c|l|+1 c1

(R −R0)|l|
|t|γ
)βl

≤
(

c

R−R0

)<β>

(c1(R−R0)|t|γ)|β|

(56)
for 0 < R0 < R in Sθ.

Let us estimate ti+jρ(x)
(
log t
λ

)k

Ψβ
1 .

We put η(t, λ) = max
{∣∣∣ log tλ

∣∣∣ , 1}, c2 = max
{

c
R−R0

, 1
}

and c3 = c1(R − R0).
Since we have

< β >≤ 2|β|+ |β|∗ ≤ i+ j + 3|β| (57)

and
k ≤ i+ |β|0 + |β|1 + 2(j − 1) ≤ i+ |β|+ 2j, (58)

we obtain∣∣∣∣∣
∣∣∣∣∣ti+jρ(x)

(
log t
λ

)k

Ψβ
1

∣∣∣∣∣
∣∣∣∣∣
r

≤

≤ {|c2η(t, λ)t|}i
{
||c2η(t, λ)2tρ(x)||r

}j {
|(c2)3c3η(t, λ)tγ |

}|β|
in Sθ. For any sufficiently small ε > 0, there exists a sufficiently small |t| in Sθ
such that

|c2η(t, λ)t| < ε, ||c2η(t, λ)2tρ(x)||r < ε, |(c2)3c3η(t, λ)tγ | < ε, (59)
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and we obtain ∣∣∣∣∣∣∣∣ti+jρ(x) ( log t
λ

)
Ψβ
1

∣∣∣∣∣∣∣∣
r

≤ εm. (60)

Then by Lemma 22, we have

||u||r ≤
∑
m≥1

Ymε
m (61)

for sufficiently small |t| in Sθ. Hence the formal solution (22) converges for x ∈ Dr

and sufficiently small |t| in Sθ. Q.E.D.

4 Completion of the proof of Theorem 5 in the case
ρ(0) = 1

In this section, let us complete the proof of Theorem 5 in the case ρ(0) = 1.
We know the following theorem.

Theorem 24. If ui(t, x) ∈Õ+ (i = 1, 2) are solutions of (9), we have;
1. For any a < ρ(0) = 1, we have t−a(u1 − u2) ∈Õ+.
2. If t−b(u1 − u2) ∈Õ+ for some b ≥ ρ(0) = 1, we have u1(t, x) = u2(t, x) in Õ+.

For the proof, see Gérard and Tahara ([2] Theorem 3).

By the discussions in sections 2, 3 and 4, we already know the following results;

(C1) If ρ(0) = 1 and ρ(x) �≡ 1, for any ϕ(x) ∈ C{x}, the equation (1) has a
unique Õ+-solution U(ϕ)(t, x) having an expansion of the form

U(ϕ) = we0
0,0,0(x)φ1 + w0

0,1,0(x)t
ρ(x) +

∑
m≥2

∑
i+|β|=m
|β|∗≤m−2

uβi (x)t
iΦβ1 (62)

+
∑
m≥2

∑
i+j+|β|=m

j≥1,|β|∗≤m−2

∑
k≤i+|β|0+|β|1

+2(j−1)

wβ
i,j,k(x)t

i+jρ(x){log t}kΦβ1

with w0
0,1,0(x) = ϕ(x), where all the coefficients uβi (x), w

β
i,j,k(x) are holomorphic

in a common disk centered at the origin of Cn
x . If we take ϕ(x) = 0, then the

solution u0(t, x) has the expansion

u0(t, x) = U(0) = ue00 (x)φ1 +
∑
m≥2

∑
i+|β|=m
|β|∗≤m−2

uβi (x)t
iΦβ1 . (63)

(C2) If ρ(0) = 1 and ρ(x) �≡ 1, and if a solution u(t, x) ∈ Õ+ of the equation (1)
is expressed in the form

t−1
(
u(t, x)− ue00 (x)φ1(t, x)− ϕ(x)tρ(x)

)
∈ Õ+, (64)
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then the coefficient ue00 (x) is uniquely determined by the equation (1), and they
are independent of ϕ(x).

If ρ(0) = 1 and ρ(x) �≡ 1, by (C1) we have

S+ ⊃ {U(ϕ); ϕ(x) ∈ C{x}} . (65)

Hence it is sufficient to prove the following proposition to complete the proof of
the main theorem.

Proposition 25. Assume (A1), (A2) and (A3). Let u0(t, x) and U(ϕ)(t, x) be
as above. If ρ(0) = 1 and ρ(x) �≡ 1, and if u(t, x) ∈ S+, then we can find a
ϕ(x) ∈ C{x} such that u(t, x) ≡ U(ϕ)(t, x) holds in Õ+.

The proof of this proposition is almost the same as that of Proposition 2 in Gérard
and Tahara [1]; so we may omit the details. Q.E.D.

By (65) and Proposition 25 we obtain the main theorem 5 in the case ρ(0) = 1
and ρ(x) �≡ 1. Q.E.D.

5 Proof of Theorem 5 in the case ρ(0) = N

In Section 2, 3, and 4, we have proved Theorem 5 in the case ρ(0) = 1. In this
section, we will prove Theorem 5 in the case ρ(0) = N ≥ 2 and ρ(x) �≡ N .

We put

u(t, x) =
N−1∑
i=1

ui(x)ti + tN−1w(t, x), (66)

where ui(x) ∈ C{x} (1 ≤ i ≤ N − 1) and w(t, x) ∈ Õ+.
Then by an easy calculation we see

Lemma 26. If the function (66) is a solution of the equation (9), the functions
u1(x), . . . , uN−1(x) are uniquely determined and w(t, x) satisfies an equation of
the following form:

(t∂t − ρ(x) +N − 1)w = ta(t, x) + tA0(t, x)w + t

n∑
i=1

Ai(t, x)∂iw (67)

+
∑
|α|≥2

t(N−1)(|α|−1)Aα(t, x)wα0

n∏
i=1

(∂iw)αi ,

where

a(t, x) =
1
tN

(G2(x)(t, w0, ∂xw0) + ta(x)− (t∂t − ρ(x))w0) (68)
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with w0 =
∑N−1

i=1 ui(x)ti and

Ai(t, x) =
1
t

∂G2

∂Xi
(x)(t, w0, ∂xw0), i = 0, 1, . . . , n,

Aα(t, x) =
1
α!
∂|α|G2

∂Xα
(x)(t, w0, ∂xw0), |α| ≥ 2.

Since the equation (67) satisfies the conditions (A1), (A2), (A3) and the char-
acteristic exponents ρN (x) = ρ(x) −N + 1 satisfies ρN (0) = 1, we can apply the
results in sections 2, 3 and 4.

Further, by the form of all the nonlinear parts of the equation (67), we see that
the formal solution constructed in Section 2 has the following form:

w = uN,e0
0 (x)φN,1 + wN,0

0,1,0(x)t
ρN (x)

+
∑
i≥2

uNi (x)ti +
∑
m≥2

∑
i+|β|=m

|β|∗≤m−2,|β|≥1

uN,β
i (x)ti+(N−1)(|β|−1)ΦβN,1 (69)

+
∑
m≥2

∑
i+j+|β|=m

j≥1,|β|∗≤m−2

∑
k≤i+|β|0+|β|1

+2(j−1)

wN,β
i,j,k(x)t

i+(N−1)(j+|β|−1)+jρN (x){log t}kΦβN,1

where ΦβN,1 =
∏
|l|≥0

(
∂lxφN,1

l!

)βl

and φN,1 =
tρ

N (x) − t
ρN (x)− 1

. Therefore we have

u =
N−1∑
i=1

ui(x)ti + uN,e0
0 (x)φN + wN,0

0,1,0(x)t
ρ(x)

+
∑
i≥2

uNi (x)ti+N−1 +
∑
m≥2

∑
i+|β|=m

|β|∗≤m−2,|β|≥1

uN,β
i (x)tiΦβN (70)

+
∑
m≥2

∑
i+j+|β|=m

j≥1,|β|∗≤m−2

∑
k≤i+|β|0+|β|1

+2(j−1)

wN,β
i,j,k(x)t

i+jρ(x){log t}kΦβN .

We put

uNi (x) -→ ui+N−1(x) for i ≥ 2, uN,β
i (x) -→ uβi (x) for |β| ≥ 1,

wN,β
i,j,k(x) -→ wβ

i,j,k(x) for any (i, j, k, β),

and we have u0N(x) ≡ 0 by the form of the solution (69) and the above relations.
Hence this completes the proof of Theorem 5. Q.E.D.
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