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Abstract. In 1990, Gérard-Tahara [2] introduced the Briot-Bouquet type
partial differential equation t0;u = F(t,x, u, Ozu), and they determined the
structure of singular solutions provided that the characteristic exponent
p(z) satisfies p(0) & {1,2,...}. In this paper the author determines the
structure of singular solutions in the case p(0) € {1,2,...}.
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1 Introduction

In this paper, we will study the following type of nonlinear singular first order
partial differential equations:

towu = F (t,x,u, 0yu) (1)

n 0 0

where (t,z) = (t,21,...,2,) € Ct X C, Oyu = (11, ...,00u), Oy = Er 0; = 3
T
fori =1,...,n, and F(t,x,u,v) with v = (v1,...,v,) is a function defined in a

polydisk A centered at the origin of C; x CI x C, x CI'. Let us denote Ay =
AN{t=0,u=0,v=0}.
The assumptions are as follows:

(A1) F(t,x,u,v) is holomorphic in A,
(A2) F(0,2,0,0) = 0 in Ao, @

F
(A3) %(O,x,0,0) =0in Agfori=1,...,n.

This is the final form of the paper.
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Definition 1. ([2],[3]) If the equation (1) satisfies (A1), (A2) and (A3) we say
that the equation (1) is of Briot-Bouquet type with respect to ¢.

Definition 2. ([2],[3]) Let us define

o) = 2£(0.2,0,0), (3)

ou
then the holomorphic function p(x) is called the characteristic exponent of the
equation (1).

Let us denote by

1. R(C\{0}) the universal covering space of C\{0},

2. Sy = {t € R(C\{0}); |argt| < 6},

3.5 (e(s)) = {t € R(C\{0}); 0 < |t| < e(argt)} for some positive-valued function
€(s) defined and continuous on R,

4. Dr={2€C" |z;] < Rfori=1,...,n},

5. C{z} the ring of germs of holomorphic functions at the origin of C™.

Definition 3. We define the set O, of all functions u(t, z) satisfying the following
conditions;

1. u(t, z) is holomorphic in S (e(s)) x Dg for some €(s) and R > 0,

2. there is an a > 0 such that for any § > 0 and any compact subset K of Dg

meaé(\u(t,x)|:O(|t\“) as t—0 in Sp. (4)

We know some results on the equation (1) of Briot-Bouquet type with respect
to t. We concern the following result. Gérard R. and Tahara H. studied in [2] the
structure of holomorphic and singular solutions of the equation (1) and proved the
following result;

Theorem 4 (Gérard R. and Tahara H.). If the equation (1) is Briot-Bouquet
type and p(0) € N* = {1,2,3,...} then we have;

(1) (Holomorphic solutions) The equation (1) has a unique solution ug(t,z) holo-
morphic near the origin of C x C™ satisfying uo(0,z) = 0.

(2) (Singular solutions) Denote by S, the set of all O -solutions of (1).

g, — {{uo(t,x)} when  Rep(0) <0, (5)
7 WHuo(t, 2)} U{U(9);0 # p(x) € C{z}} when  Rep(0) > 0,

where U(p) is an (5+-solution of (1) having an expansion of the following form:

Up) =Y w@t' + > @ir(@)t™ 7 (logt)*, wo10(x) = p(x). (6)
i>1 i+2j>k+2,5>1
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In the case p(0) € N*, Yamane [7] showed that the equation (1) has a holo-
molphic solution in a region {(¢,7) € C x C"; |z| < ¢|t|¢ < 1} for some ¢ > 0 and
d > 0, but the solution is not in 5.

The purpose of this paper is to determine S, in the case p(0) € N*.

The following main result of this paper is;

Theorem 5. If the equation (1) is Briot-Bouquet type and if p(0) = N € N* and
p(x) # pl0), then
Sy ={U(¢); ¢(z) € C{z}}, (7)

where U(y) is an O -solution of (1) having an expansion of the following form:

U(p) = (@)t +u (@)on(tx) + Y. ul (@)t'd
i+181>2,18]<c0,

|8« <i+|B]—2
o .
+ud (@@ + N S wl (@)t log t}reR
i+j+81>2,  k<i+|Blo+|B]1
|B]<0,52>1, +2(j—-1)

|8« <i+j+|6]—2

where u (x) = 0, wg 1 o(x) = @(x) is arbitrary holomorphic function and the other

coefficients uf(x), wfjk(m) are holomorphic functions determined by w( | o(x) and
defined in a common disk, and

l:(llv"'uln)ENnv |l|:l1++ln7 ﬁ:(ﬁZEN; ZGNn),
1B/ =" 81, 1Bl =>_ B forp>0, |8l => (Il - 1)8,

[1]=0 [t|=p [11>2
d! qu)ﬁ’ () — ¢N
ol = ( = Lol =8Bl n(ta) =
N ll|_>[0 I ! p(z) — N

The following lemma will play an important role in the proof of Theorem 5.

At first, we define some notations. We denote for [ € N”, ¢; = (Ok; k € N")
with 5y = 1 and 0, = 0 for k # [ and for p € N, e(p) = (i1,...,i,) with i, =1
and i, = 0 for ¢ # p, and denote that ' < [° is defined by |I!| < |I°) and I} <1
fori=1,...,n.

Lemma 6. Let p(z), ¢n and @Jﬂv be in Theorem 5. Then we have;
L @5 = Ym0 Billy + DO fori =1, n,
2. 10N = p(x)on + 17, o
—e, gl ! ) xB—e0+e
3. 10,85 = |8lo(x) B + BotN B + 3 o1y Tt cao o Bl om0

Proof.
1. By 0,(0Lon /1) = @(agqu/l!)ﬁzflai“(f’)qs]v/u, we have the result 1.
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2. By t0,0n = (p(x)t*®) — NtN)/(p(z) — N), we have the result 2.
3. By 2, we have

1 B ! Bi—1 o N
(%) a () et

Therefore we have

1 Bi
tO; <3$¢N> =
I
Bop(x)! +605N¢§$"1 S ., =0
1 1 -1 T l l 11— .
Bio(x) (azl?N) + Xo<va B 8?l—z§)§! 1O fn (811?1\’) if |I] > 0.

Hence we have the desired result. Q.E.D.

2 Construction of formal solutions in the case p(0) =1

By [2] (Gérard-Tahara), if the equation (1) is of Briot-Bouquet type with respect
to t, then it is enough to consider the following equation:

Lu = tou — p(x)u = a(x)t + Gao(x)(t, u, Opu) (9)

where p(z) and a(x) are holomorphic functions in a neighborhood of the origin, and
the function Gy (z)(t, Xo, X1, . . ., X;,) is a holomorphic function in a neighborhood
of the origin in C} x C; x Cx, x Cx, x -+ x Cx, with the following expansion:

Ga(2)(t, Xo, X1, Xn) = Y apa(@)tP{Xo}*{ X1} - {X,}* (10)
ptlal>2

and we may assume that the coefficients {ap,o()}p4|a|>2 are holomorphic func-
tions on Dp, for a sufficiently small R > 0. We put A, o(R) := maxXgzepy, |ap,a ()]
for p+|a| > 2. Then for 0 <r < R

AP7OL(R) P yo (e «@
Y A e Xy ()
ptial=

is convergent in a neighborhood of the origin.
In this section, we assume p(0) = 1 and p(x) # 1 and we will construct formal
solutions of the equation (9).

Proposition 7. If p(0) = 1 and p(z) £ 1, the equation (9) has a family of formal
solutions of the form:

u=ug’(x)p1 + Z Z u? (x)t'® (12)
m2>2 i+|B|=m
[Bl.<m—2
+ w0 ()t + Z Z Z wijk(x)tiﬂp(m){logt}kéf

m22 i+j+|Bl=m k<it+|Blo+|Bl1
721,18 <m—2 +2(5-1)
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where wg , o(x) is an arbitrary holomorphic function and the other coefficients

B

u; (z), wf]k(m) are holomorphic functions determined by wg | o(x) and defined in

a common disk.

Remark 8. By the relation |3|. < m — 2 in summations of the above formal solu-
tion, we have §; = 0 for any [ € N™ with [I| > m.

We define the following two sets U, and W,, for m > 1 to prove Proposition 7.

Definition 9. We denote by U, the set of all functions u,,, of the following forms:

w = (@)t + ug(z)é,

U, = Z ul ()t @y for m > 2, (13)
i+|8l=m
|Bl.<m—2

and denote by W, the set of all functions w,, of the following forms:

wp = wg’l)o(x)tp(x) s

Wy, = Z Z wijk(ﬂv)t”jp(“’){logt}k¢f for m > 2
i+j+|Bl=m  k<it|Blo+|Bl
JzL|Ble<m—2  +2(j-1)

where u (z), ngvk(l') € C{z}.

%

We can rewrite the formal solution (12) as follows:

u = Z (U, + wy,) where Uy, € Upyy Wiy, € Wy, (14)

m>1

Let us show important relations of u,, and w,, for m > 2. By Lemma 6, we
have

m—1
pm = > {0l @FP] + 37 (1 + 1) (@)t ],
i+|Bl=m l1|=0
‘ﬁ|*§mf2
Dpwom = > {apwiﬂ,j,k(m)t”jp(x){10gf}k45f (15)
i+j+|Bl=m  k<i+|Blo+|8|1
J>1,|Blx<m—2 +2(5—1)
+jpp(x)w); ()P {log £} ]

m—1
+ D+ 1)5zwfj7k(x)ti+jp(m){logt}kqsf*el*elﬂ(m}
l1]=0
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forp=1,...,n, and we have
Lum= {{i + (18] = Dpla) yul (2)t' @, + Goul ()t 1)~ (16)
i+]Bl=m
[B]«<m—2
- Z > ﬁgo ) ul (@) el‘)*‘fﬂ},
[10]=111<10
Lum= > {ﬁ—%@4—W|—1nxm}

i+j+|8l=m  k<it+|Blo+|B1
J>1,|B[«<m—2 +2(j-1)

xwf;  (2)t97) {log t}F Y
+kuwl . (z )t“””(x {log t}F~ 1¢ﬂ+ﬁow (@)t PO log kg0

.5,k
+ Z Z ﬁlo ) zﬂj,k(x)ti+jp($){logt}k¢§37610+ell}.

[10]=111<0
‘We show two lemma.
Lemma 10. If u,, € Uy, and w,, € W,,, then Lu,, € U,, and Lw,, € W,,.

Proof. We prove Lu,, € U,,. We will see all powers of each terms in (16). For the
second term in (16), we have i+1+4|8—eg| = i+|8| = m and [S—ep] = [f] < m—2.
For the third term, we have i+|8—ep+ep| = i+|8] = m and [B—ep+epn] = [F]
G [19] = 1), = [8] — (I1°] = 1) G [1°] > L and [I'] < 1), = [8] — 1] + |1}] GF |1°] > 1
and |I*| > 1). Further by I* < [°, we have [3 — ejo + e;1] < [3] < m — 2. Hence we
have Lu,, € U,,.
We can prove Lw,, € W,, as Lu,, € U,,, and we omit the details. Q.E.D.

Lemma 11. If u,, € Uy, and w,, € W,,, then the following relations hold by the
relation (15) fori,j=1,...,n

a(x)Up, C Uy, and a(x)W,, C Wy, for any holomorphic function a(x),

AU, ¢1Up C Uppyr and tPOU,,, t W, tPOW,,, 01 Won © Wiy,

U X Up, Ojm X OjUn, Oitm X Up € Unign,

Wi X Wy Wi X 0jWn, OiWm X W, € Wingn,

U X Wr,y Oim X Wr,y U X OjWn, Ojtty X 0wy € Wigp.

Proof. This is verified by the relations (15) and (16) but tedious calculations. We
may omit the details. Q.E.D.

Let us show that w,, and w,, are determined inductively on m > 1. By substi-

tuting Z (Um + wy,) into (9), we have
m>1

(1= p(x))ui (@) +ug’ (2) = a(), (17)
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for m > 2
(T4} n ]
Lu,, = E apo(z)t? H Urng 1, H H Ojtim; . » (18)
p+|a)>2 ho=1 j=1h;=1
pt|my|=m
[e7s) n Qg
_ p
Lwp = Y apa(@t [T @npny +wmeng) [T 1T 0mi, +wim,n,)
pt|of>2 ho=1 J=1h;=1
pt|mn|=m
[e7s) n Qg
- E : apya('r)tp H Umo,ho H H 8jumj,hj7 (19)
ptlal>2 ho=1 i=1h;=1
pt|mn|=m
n .
where |my| =3, ;mi(a;) and m;(a;) = mi1 + -+ +miq, fori=0,1,....n

We take any holomorphic function ¢(x) € C{z} and put wg ; o(z) = ¢(z), and
by (17), we put ud(x) = 0 and ug’(z) = a(z).

For m > 2, let us show that u,, and w,, are determined by induction. By
Lemma 11, the right side of (18) belongs to U,,, and the right side of (19) belongs to
Wiy Further by mj n;, > 1, we have mjp, <mforh; =1,...,a;and j =0,...,n
Then for m > 2, we compare with the coefficients of t'®} and t*+7°(®) {log t}*®~
respectively for (18) and (19), then put

{i+ (18] = Vp(a)}uf (2) (20)
Brenggy 1 S O (@) e
+ (Bo + 1u Z 2 10 Bro + 1)W“i (z)
= ff({ap,a}zgpﬂagmv { ( )}i’+|ﬂ’|<m)

and
{i+(j+18 - 1p (x)}w?jk< )+ (k+ Dw UkH( )

G D @+ S S (o4 ) e ) o)

[19]=1 0<11 <10 (o —mr
4
=g/ ({ap.ata<piial<m {u (@)} 41511 <ms {wiﬂ/,j’,kl(x)}i’+j’+\,3’|<m)'

We define an order for the multi indices (4, 5) and (4, j, k, ) to show that u} 5 (2)

and w? . () are determined by (20) and (21).

N

Definition 12. The relation (i’, 3') < (i, ) is defined by the following orders;
1Li' +|p <i+|pl
2.If i' + |#| =i + |B], then i < i.
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3.If i/ +|#| =i+ 6| and ¢/ =14, then |5 < |B]o-
A B =i+ 18], i =i, 8]0 = |Blo, -, |8t = [Bly, then [5'[111 < [Bli41-
The relation (¢, j', k', ") < (i, 4, k, B3) is defined by the following orders;

[N

Li+j7 4+ <i+j+10

2.If ¢ + 5 +|f'| =i+ j+|p], then ¢/ <.

3.Ifi' +j' +|8|=i+j+|B| and i’ =i, then j' < j.

4T3 +§ + |3 =i+j+]6, 7 =iand j' = j, then ||y < |B]o.

I+ + |0 =i+ + 18, =4, 3 = J, 18lo = Blos---, |81 = |8, then

18141 < |Bl141-
6. If (', 5, 5") = (4,4,0), then k' > k.

For m > 2, we have i + (|3 — 1)p(z) # 0 and i + (5 + | 8] — 1)p(z) # 0 by p(0) = 1.

Therefore all the coefficients uf (z) and wf ;x(2) are determined in the order of

Definition 12. Hence we obtain Proposition 7. Q.E.D.

3 Convergence of the formal solutions in the case p(0) =1

In this section, we show that the formal solution (12) converges in O,

Proposition 13. Let v satisfy 0 < v < 1 and let X be sufficiently large. Then for
any sufficiently small r > 0 we have the following result;
For any 6 > 0 there is an € > 0 such that the formal solution (12) converges
in the following region:
{(t,2) € Ce x C; [n(t, \t] < e, [n(t, ) 17| <e,
In(t, )t7| <e, t€ Sy and x € D,},

where n(t, \) = max {|(logt)/A|, 1}.

In this section, we put wf)o’o(x) = uf(az) and wak(az) =0 for k > 1 in the
formal solution (12). Then the formal solution (12) is as follows:

u = wy' o(T)P1 + wg,l,o(l“)tp(x)

+> ) S Wl (@)t {logt} ). (22)

m22 i+j+|B|=m k<i+|Blo+[8]1

Let us define the following set V,,, for (22).

Definition 14. We denote by V;,, the set of all the functions v, of the following
forms:

1 = wgf’o)o(x)qﬁl + U)g,l,o(x)tp(w)» (23)

U, = Z Z wijk(x)t”jp(w){logt}k¢f for m > 2.
i+j+|8l=m k<it+|Blo+[6]1
[Bl«<m—2 +2(j-1)
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We define the following estimate for the function v,,.

Definition 15. For the function (23), we define

[lwoo,0llr
— + [l 1 ollr, (24)

._ Hw?m””‘k f > 9

re P= Z Z — e for m>
i+j+|Bl=m k<i+|Blo+5
1Bl.<m—2  +2(j—1)

Hler,C,)\ = Hler,c =

|[vm]

for ¢ > 0 and A > 0, where

Hwiﬂ,j,k\lr = max |wfj,k;('r)‘ and < f>= Z (|I] + 1), (25)
" |]>0

‘We will make use of

Lemma 16. For a holomorphic function f(x) on Dg, we have

ol
102 fl1z, < —lfll for 0<Ro<R. (26)

(R — Ro)

Proof. By Cauchy’s integral formula, we have the desired result, and we omit the
details. Q.E.D

Lemma 17. If a holomorphic function f(x) on Dg satisfies

HfHRoSm for 0<r<R (27)
then we have
Ce(p+1 )
|8if|Ro§ﬁ for 0<r<R, i=1,...,n. (28)

For the proof, see Hérmander ([5]lemma 5.1.3)

Let us show the following estimate for the function Lv,,.

Lemma 18. Let 0 < Ry < R. Then there exists a positive constant o such that
for m > 2, if v, € V,;, we have

[| Lo,

rea = gmlvmllren for 0<7 < Ro (29)

for sufficiently small ¢ > 0 and sufficiently large A > 0.
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Proof. Let us give an estimate the second, the third and the fourth term in the
right side of the second relation in (16) respectively.

For the second term, since k <i+|Blo+[8]1+2(j—1) <2mbyi+j+ |8 =m
we have

n= Y 3 k‘|wi‘ﬁj7k+1”T)‘k71 < 2_m|‘v I (30)
2 = C<’6> = ml||r,c, -
i+j+|8|=m k<i+|Blo+|8]1

[Bl.<m—2 +2(j—1)

For the fourth term, we have

ﬂlo Halo_llp’wﬂ'kHT)\k
Z 3J 3

L= ), > 5 Y T et (81)
i+j+|B8]=m k<i+[Blo+|8]1 [1°]= 1l1<l°
|ﬂ‘*§m 2 +2(.7 1)

k
0) U ol o 1105 il
< > > Z 3 it 19 ellne :
= <B>
i+ +1B|=m k<i+|Blo-+1B]1 110]=1 11 <0 ( - e
[B]«<m—2 +2(3-1)

By Lemma 16, we have

o 100 ) . |01 [2
Z 01— |ﬁ< Z (R_R0> ol r (32)

11<io 11<io
< enllpl|r R—Ry \"
~“ R—Ry \R—Ryp—c

for sufficiently small ¢ > 0. Therefore by (31) and (32), we have

Hw kH AF
neng Y Y T ald g
i+j+|68|=m k<i+|Blo+|B]1 [I°|=1
[Bls<m—2 +2(j-1)
where #(c) = < ()" o] .
For the third term, we have

llw) |l AF
Ty:= ) . b
i+j+|Bl=m k<i+|Blo+|6|1
|8« <m—2 +2(5—-1)

= Z Z cﬁoiuw?’j’k”r)\k.
o<B>
i+j+|B8|=m k<i+|Blo+|8l1
IBl.<m—2  +2(j—1)
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Therefore, since ¢fy + k(c) Z\%T; B < gm by the conditions £(0) = 0 and
i+ 7+ |8] = m > 2 for sufficiently small ¢ > 0 and some o > 0 we have

2m o
Tyt T 7o < (54 ) ol (34)

Further we have |i + (j + |8] — 1)p(z)| > om by the condition p(0) = 1 and
i+ 7+ |B] = m > 2. Therefore we have

_2m o
> lom h\ 3m

Hence for sufficiently small ¢ > 0 and sufficiently large A > 0, we obtain the desired
result. Q.E.D.
Let us estimate the function 9;v,,.

(35)

Definition 19. For the function v,, € V;,, we define

Dy, = Z Z 8pwfj7k(x)ti+jp(m) {logt}* o} (36)
i+ Bl=m k<i+|Blo+|BN
[Bl«<m—2 +2(-1)

forp=1,....n
Lemma 20. Ifv,, € Vi,,, then fori=1,...,n, we have
| 3m—2|

r.c, ,CoA\

(37)
Proof. We have

m—

>+ 1)B, Z\l\+1ﬂl_2\m+[]<3m—2. (38)

11>0 =0
We put ¢g = max {H@ipHRD}, and by the relations (15), (38) and j < m we ob-
tain the desired estimate. Q.E.D.

Therefore by the relations (18), (19) and Lemma 18, 20, we have the following
lemma.

Lemma 21. If u= Z Um 18 a formal solution of the equation (9) constructing
m>1
in Section 2, we have the following inequality for vy, (m > 2):

HLUer,c,A
(825}
< Z Hap,ll |7‘ H vao,h0| T,C,A
ptlal>2 ho=1

pt|my|=m

n a;
3mi’hi -2
Nlreat-

i=1h,=1
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Let us define a majorant equation to show that the formal solution (22) con-
verges.
We take A; so that

|lwglo,oll
— + Hw8,1,oHR < Ay,

[10iwg%,0ll
2007 Haiwg,l,OHR <A

fori=1,...,n.
Then we consider the following equation:

g g
Y = —Ait 39
2 2 (39)
1 Apo(R) “ 3\
— Py Py o Y +c\Y +2Y ) .
+R_rp+§|>2 (R—rypHlel=2" };[1 remTL

The equation (39) has a unique holomorphic solution Y = Y (¢1) with Y'(0) = 0 at
(Y,t1) = (0,0) by implicit function theorem. By an easy calculation, the solution
Y =Y (t1) has the following form:

Cm
Y = mzxymtlm with Y, = BT (40)
where Y1 = C7; = Ay and C,,, > 0 for m > 1.
Then we have;
Lemma 22. For m > 1, we have
m||vm|lrer <Y for 0<r <Ry (41)
|1 Divm||rer < €Yy for 0<r < Ry, (42)

fori=1,...,n.

Proof. By A1 = Y7 and the definition of A, (41) and (42) hold for m = 1.

By induction on m, let us show that (41) and (42) hold for m > 2. By substitut-
ing the solution Y = )" ., ¥,,t;" into the equation (39), we have the following
relation: -

@0

o 1 Ap o(R)
= 2 o perers L Yo (43)
ptlal>2 ho=1

pt|mn|=m

0=

(823

- 3
X H H {eymi,hi +CO)\Ymi,hi + EYmi,hi}
1=1h;=1
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for m > 2. Therefore if we assume that (41) and (42) hold for m; n, < m, by (43),
Lemma 18 and Lemma 21 we obtain

gmva |7‘c)\ S (R_T)zym (44)
2 s 2
Therefore we have
m[vm|lr,ex < (R —71)Ym < Y. (45)

The relation (45) is rewrited as follows:

Hwiﬁijr)‘k Cm
LY > s S (46)
i+j+]8l=m k<i+[Blo+]B1

By (46) and Lemma 17, we have

—1eCyy,

(m
mllDitmllrer < r— s (47)
fori=1,...,n and 0 < r < R < 1. Therefore we have
eChm
Di mllrer S 55 = Ym 48
1Dl < oy =e (15)

Hence (41) and (42) hold for m > 2. Q.E.D.

Let us show that the formal solution (22) converges by using (41) in Lemma
22. We put (22) as follows:

u = ug’ ()1 + w8,1,0(93)tp(m)

B k k
Wigk @A 4o (logt” s
2. 2 > e x )
m>2i+j+|Bl=m k<i+|Blo+|6]1
IBla<m—2  +2(j—1)

where

! B
v’ =[] (le%) . (49)

[1]>0
Firstly let us estimate (49). For ||$1||r, we have the following lemma.
Lemma 23. For any v with 0 < v < 1, there ts an R > 0 such that
o1llr = O (|t]7) ast— 0 in Sp (50)

holds for any 6 > 0.
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Proof. We put
tro(x)ta _ o
¥ -

1=t 51
SR o
with o+~ =1 and po(z) = p(z) — 1. Then we can take R > 0 with

llpollr < o (52)

by po(0) = 0. Therefore we have
tpo(x)+o¢ _ o

’ po(z)

for and any 6 > 0. Hence we have the desired result. Q.E.D.
By Lemma 23, there exists a positive constant c¢; such that

< |logt|[t|]*~llPelln 0 as t—0 in Sy (53)

Iéillr < alt” i So. (54)
By Lemma 16 and (54), for || > 0 we have

1! lle
1] HQSIHR < -

! <———
H x¢1HR0 = (R—Ro)

m‘tr/ for 0< RO < R. (55)

Therefore, we have

B <p>
1711, < IT (% = le)” < (5 ) (@R = Rol)”

150 (R — Ro) R — Ry
(56)
for 0 < Rp < R in Sp. .
i log t
Let us estimate ¢*+7°(®) % wP
We put 7n(t,\) = max{ lngt , 1}, cy = max{R%RO,l} and ¢3 = ¢1(R — Ro).

Since we have
<B>Z2(B] + (Bl <i+ 5+ 3|6 (57)

and
k<i+|Blo+ 61 +2(—1) <i+|38+2j, (58)

we obtain
" logt\ "
titio(x) <_O§ ) Wf

< Clean(t, )elY {llean(t, 2, Y {lea)esn(e, 1y}

<

s

in Sp. For any sufficiently small € > 0, there exists a sufficiently small [¢| in Sy
such that

lean(t, Mt < €, [|ean(t, N2tP D], < €, |(c2)Pean(t, NE7] < e, (59)
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si+in(a) ( Of ) P

Then by Lemma 22, we have

and we obtain
<em. (60)

T

Jullr < Ype™ (61)

m>1

for sufficiently small |¢| in Sp. Hence the formal solution (22) converges for z € D,
and sufficiently small |¢| in Sp. Q.E.D.

4 Completion of the proof of Theorem 5 in the case
p(0) =1
In this section, let us complete the proof of Theorem 5 in the case p(0) = 1.

We know the following theorem.

Theorem 24. If u;(t,z) €O, (i =1,2) are solutions of (9), we have;
1. For any a < p(0) = 1, we have t~*(u1 — u2) €04 B
2. Ift=%(uy —ug) €04 for some b > p(0) =1, we have uy(t,x) = us(t,z) in O.

For the proof, see Gérard and Tahara ([2] Theorem 3).
By the discussions in sections 2, 3 and 4, we already know the following results;

(C1) If p(0) = 1 and p(z) # 1, for any ¢(z) € C{z}, the equation (1) has a
unique O, -solution U(p)(t, z) having an expansion of the form

U(p) = i o(2)dr +whyo@t?™ + > > wl(z)i'd} (62)
m2>2 i+|B|=m
[Bl.<m—2
S DD D SRR T

m22 itj+|Bl=m  k<it+|Blo+|8]
izL|Bla<m—2  +2(j—1)

with wg ; o(x) = ¢(z), where all the coefficients u}; 5 (2), wf j.x () are holomorphic
in a common disk centered at the origin of C”. It we take p(z) = 0, then the

solution ug (¢, z) has the expansion

up(t, ) = U(0) = uf(x)dr + » Z )P, (63)
m>2 i+|f|=
Iﬂ\*ém—Q

(C2) If p(0) = 1 and p(z) # 1, and if a solution u(t,z) € O, of the equation (1)
is expressed in the form

e (ut, @) — (@)1 () — (@)™ ) € O, (64)
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then the coefficient ug°(z) is uniquely determined by the equation (1), and they
are independent of ¢(z).

If p(0) =1 and p(z) £ 1, by (C1) we have

S+ 2 {U(p); ¢l(x) € C{z}}. (65)

Hence it is sufficient to prove the following proposition to complete the proof of
the main theorem.

Proposition 25. Assume (Al), (A2) and (A3). Let uo(t,z) and U(p)(t,x) be
as above. If p(0) = 1 and p(z) # 1, and if u(t,z) € Si, then we can find a
p(x) € C{x} such that u(t,x) = U(p)(t,x) holds in O.

The proof of this proposition is almost the same as that of Proposition 2 in Gérard
and Tahara [1]; so we may omit the details. Q.E.D.

By (65) and Proposition 25 we obtain the main theorem 5 in the case p(0) = 1
and p(x) #Z 1. Q.E.D.

5 Proof of Theorem 5 in the case p(0) = N

In Section 2, 3, and 4, we have proved Theorem 5 in the case p(0) = 1. In this
section, we will prove Theorem 5 in the case p(0) = N > 2 and p(x) # N.

We put
N—-1

u(t,x) = Z wi ()t + tN " Lw(t, x), (66)
i=1
where u;(z) € C{z} (1 <i< N —1) and w(t,z) € Oy.
Then by an easy calculation we see

Lemma 26. If the function (60) is a solution of the equation (9), the functions
ur(x),...,un—1(x) are uniquely determined and w(t,x) satisfies an equation of
the following form:

(t0r — p(x) + N — Dw = ta(t,x) + tAg(t,x)w + ¢ z": A;(t, x) 0w (67)

+ Z t(Nfl)(\a|71)Aa(t’x),wao H(ai,w)ai’

la|>2 i=1

where
a(t,z) = tiN (Ga(z)(t, wo, Ozwo) + ta(x) — (t0y — p(x))wp) (68)
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with wy = Zfi_ll ui(x)t* and
i=0,1,....n,

186G

Aj(t,z) = T = X? (2)(t, wo, Dpwo),
1 01*Gy

Aa(t,x): J 8Xa ( )(tvw()vaxwo)v

Since the equation (67) satisfies the conditions (A1), (A2), (A3) and the char-
N + 1 satisfies p™V(0) = 1, we can apply the

la| > 2.

acteristic exponents p” (z) = p(z)
results in sections 2, 3 and 4

Further, by the form of all the nonlinear parts of the equation (67), we see that
the formal solution constructed in Section 2 has the following form:

w = up ()P, +wp (@)t @
(69)

+> ulN @)t + > >

m>2  it|pl=m

ugvvﬂ(x)tiJr(N—l)(lﬂ\—1)¢15V71

i>2
18l <m—2,]8]>1
N Z Z Z Nﬂ( )ter(N D(+8l-1)+ip" $){10gt}k¢ﬁ
m22 it+j+|Bl=m k<it+|Blo+|Bl1

J21,|Bla<m—2 +2(j—1)

(@) ¢
Therefore we have

O dn &
( I ) AN = N 1

where 4563\,71 = H

[1]>0
N-1
U= u; (@)t "‘“é\’eo( )N +w010( )tp()
i=1
* AR VNP N (70)
122 m>2 i+|B|=
[B]«<m— 2\ﬁ|>1
+y > S wh @)t flog ]
m>2 itj+|8l=m k<i+|Blo+|8I1
Jj>1,18]«<m—2 +2(5—1)
We put
ul (2) — uipn_1(xz) for i>2, ufvﬁ(x) — uzﬂ(x) for |8] >1,
(@) =l (@) for any  (i,j.k.B),

% (z) = 0 by the form of the solution (69) and the above relations

and we have uy(z) =
Hence this completes the proof of Theorem 5. Q.E.D
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