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Abstract. In this paper we study a nonlinear hemivariational inequality
driven by the p-Laplacian with Neumann boundary conditions. We prove
a multiplicity theorem which produces at least three distinct solutions. We
employ a Landesman-Lazer type condition and our approach is based on
the nonsmooth critical point theory for locally Lipschitz functions.
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1 Introduction

Hemivariational inequalities are a new type of variational expressions, which arise
in physical and engineering problems, when we deal with nonsmooth, nonconvex
energy functionals. Generally speaking, mechanical problems involving nonmono-
tone, possibly multivalued stress-strain laws or boundary conditions derived by
nonconvex superpotentials, lead to hemivariational inequalities. For concrete ap-
plications we refer to the books of Naniewicz -Panagiotopoulos [22] and Pana-
giotopoulos [23]. Hemivariational inequalitites have intrinsinc mathematical in-
terest as a new form of variational expression. They include as a particular case
problems with discontinuities. In the last five years hemivariational inequalities

This is the final form of the paper.
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have been studied from a mathematical viewpoint primarily for semilinear Dirich-
let problems. We refer to the works of Goeleven-Motreanu-Panagiotopoulos [12],
Motreanu-Panagiotopoulos [21] and the references therein.Quasilinear Dirichlet
problems were studied recently by Gasinski-Papageorgiou [8],[9], [10], [11]. The
study of the Neumann problem is lagging behind. In the past Neumann prob-
lems with a C1-energy functional (i.e. continuous forcing term) were studied by
Mawhin-Ward-Willem [20], Drabek-Tersian [7] (semilinear problems) and Huang
[16], Arcoya-Orsina [2] and Hu-Papageorgiou [13] (quasilinear problems). The only
work on the Neumann problem with a discontinuous forcing term is that of Costa-
Goncalves [6], where the right hand side of the semilinear equation is independent
of z ∈ Z, it is bounded and it has mean value zero.

The aim of this paper is to prove a multiplicity result for a quasilinear hemi-
variational inequality with Neumann boundary condition, using conditions of
Landesman-Lazer type. Similar conditions were employed by Goeleven -Motreanu-
Panagiotopoulos [12] (semilinear Dirichlet problems) and by Arcoya-Orsina [2]
(quasilinear Neumann problems with a C1-potential function). In [12], the ap-
proach is degree theoretic and the authors make a rather restrictive hypothesis,
namely they assume that there exists a continuous map W : L2(Z) −→ L2(Z)
such that W (x)(z) ∈ ∂j(z, x(z)), a.e. on Z (here ∂j(z, ·) denotes the subdifferen-
tial in the sense of Clarke). Given that the Clarke’s subdifferential is only strong
-to-weak upper semicontinuous, we realize that this is a quite restrictive hypothe-
sis. In Arcoya-Orsina [2] the approach is variational. However, we think that there
is a gap in the proof of the existence theorem (theorem 3). Namely, the claim (p.
1631) that the proof of lemma 2.1 extends to the Neumann problem is not precise,
since we no longer can appeal to Poincaré’s inequality. A more careful analysis is
needed.

Our approach is variational and it is based on the nonsmooth critical point
theory for locally Lipschitz functionals as this was formulated by Chang [4] and
extended recently by Kourogenis-Papageorgiou [18].

2 Mathematical background

Let X be a Banach space and X∗ its dual. A function ϕ : X −→ R is said to
be locally Lipschitz, if for every x ∈ X there exists a neighborhood U of x and a
constant kU such that |ϕ(z) − ϕ(y)| ≤ kU‖z − y‖, for all z, y ∈ U . Recall that if
ψ : X −→ R = R∪{+∞} is proper, convex and lower semicontinuous, it is locally
Lipschitz in the interior of its effective domain domψ = {x ∈ X : ψ(x) < +∞}.
Given x, h ∈ X we can define the generalized directional derivative of ϕ at x in
the direction h by

ϕ0(x;h) = lim sup
x′→x, t↓0

ϕ(x′ + th)− ϕ(x′)
t

.
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It is easy to see that h -→ ϕ0(x;h) is sublinear continuous, so by the Hahn-Banach
theorem it is the support function of a nonempty, convex and w∗-compact set

∂ϕ(x) =
{
x∗ ∈ X∗ : (x∗, h) ≤ ϕ0(x;h), for all h ∈ X

}
.

The set ∂ϕ(x) is called the generalized (Clarke) subdifferential of ϕ at x ∈ X .If ϕ is
also convex, Clarke’s subdifferential coincides with the subdifferential in the sense
of convex analysis. If ϕ, ψ are both locally Lipschitz functions, then for all x ∈ X
and all λ ∈ R, we have ∂(ϕ + ψ)(x) ⊆ ∂ϕ(x) + ∂ψ(x) and ∂(λϕ)(x) = λ∂ϕ(x).
If ϕ ∈ C1(X), then ∂ϕ(x) = {ϕ′(x)}. This fact makes the nonsmooth critical
point theory an extension of the smooth theory. A point x ∈ X is said to be a
critical point of ϕ, if 0 ∈ ∂ϕ(x), i.e. ϕ0(x;h) ≥ 0, for all h ∈ X . Evidently, if
x ∈ X is a local extremum of ϕ, then 0 ∈ ∂ϕ(x). It is well known that the smooth
critical point theory uses a compactness-type condition known as the Palais-Smale
condition or the more general Cerami condition. In the present nonsmooth setting
this condition takes the form:“ We say that ϕ satisfies the nonsmooth Cc-condition,
if every sequence {xn}n≥1 ⊆ X such that ϕ(xn)→ c and (1+‖xn‖)m(xn)→ 0, as
n → +∞, has a strongly convergent subsequence”. Here m(x) = inf{‖x∗‖ : x∗ ∈
∂ϕ(x)}, for all x ∈ X .

Let Z ⊆ RN be a bounded open domain with a C1-boundary. We consider
the following direct sum decomposition : W 1,p(Z) = R ⊕ V, V = {v ∈ W 1,p(Z) :∫
Z

v(z)dz = 0}, 2 ≤ p < ∞. Let λ1 = inf
{‖Dv‖pp
‖v‖pp

: v ∈ V, v �= 0
}
. We can

show that λ1 > 0 and that it is the first nonzero eigenfunction of the p-Laplacian
−∆px = −div (‖Dx‖p−2 Dx) with Neumann boundary condition (note that λ0 =
0 is also an eigenvalue).

3 Multiplicity Theorem

We study the following quasilinear hemivariational inequality:
−div (||Dx(z)||p−2 Dx(z)) ∈ ∂j(z, x(z)) a.e. on Z

∂x

∂np
(z) = 0, on Γ.

 (1)

Here
∂x

∂np
(z) = ||Dx(z)||p−2 (Dx(z), n(z))RN , with n(z) the outward normal to

Γ (= the boundary of Z) and 2 ≤ p < ∞. Our hypotheses on the nonsmooth
potential j(z, x) are the following:

H(j) : j : Z × R −→ R is a function such that j(·, 0) ∈ L1(Z) and
(i) for all x ∈ R, z -→ j(z, x) is measurable;

(ii) for almost z ∈ Z, x -→ j(z, x) is locally Lipschitz;

(iii) for almost z ∈ Z, all x ∈ R and all u∗ ∈ ∂j(z, x) we have

|u∗| ≤ a(z) + c|x|r−1, with a ∈ Lq(Z)
(
1
p
+

1
q
= 1
)
, c > 0, 1 ≤ r < p;
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(iv) for almost z ∈ Z and all x ∈ R, pj(z, x) ≤ λ1 |x|p

(v) there exist two functions j± ∈ L1(Z) such that lim
x→±∞

j(z, x) = j±(z), uni-

formly for almost all z ∈ Z
(vi) there exist c− < 0 < c+ such that∫

Z

j(z, c+)dz,
∫
Z

j(z, c−)dz >
∫
Z

j±(z)dz > 0.

We consider the energy functional ϕ :W 1,p(Z) −→ R defined by

ϕ(x) =
1
p
‖Dx‖pp −

∫
Z

j(z, x(z))dz.

We know that ϕ is locally Lipschitz (see Hu-Papageorgiou [15], p.313).

Proposition 1. If hypotheses H(j) hold, then ϕ satisfies the nonsmooth Cc -

condition for c �= −
∫
Z

j±(z)dz .

Proof. Let {xn}n≥1 ⊆W 1,p(Z) be a sequence such that

ϕ(xn)→ c, with c �= −
∫
Z

j±(z)dz and (1 + ‖xn‖)m(xn)→ 0, as n→∞.

We will show that {xn}n≥1 ⊆W 1,p(Z) is bounded. Suppose not. Then by passing

to a subsequence if necessary, we may assume that ‖xn‖ → ∞. Let yn =
xn
‖xn‖

,

n ≥ 1. We may assume that

yn
w−→ y inW 1,p(Z), yn → y in Lp(Z), a.e. on Z

and
|yn(z)| ≤ k(z), a.e. on Z, for all n ≥ 1, with k ∈ Lp(Z).

From the choice of the sequence {xn}n≥1 we have that∣∣∣∣1p‖Dxn‖pp −
∫
Z

j(z, xn(z))dz
∣∣∣∣ ≤M1, for all n ≥ 1, withM1 > 0.

Dividing by ‖xn‖p we obtain∣∣∣∣1p‖Dyn‖pp −
∫
Z

j(z, xn(z))
‖xn‖p

dz

∣∣∣∣ ≤ M1

‖xn‖p
. (2)

Using Lebourg’s mean value theorem (see Clarke [5], p.41), we see that for almost
all z ∈ Z we can find u∗λ ∈ ∂j(z, λx) with 0 < λ < 1, such that

|j(z, x)− j(z, 0)| = |u∗λx|
=⇒ |j(z, x)| ≤ |j(z, 0)|+ (a(z) + c|x|r−1)|x| ≤ a1(z) + c1|x|r, a1 ∈ L1(Z), c1 > 0
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(see hypothesis H(j)(iii) and recall that j(·, 0) ∈ L1(Z)). So we obtain∫
Z

j(z, xn(z))
‖xn‖p

dz ≤
∫
Z

a1(z)
‖xn‖p

dz+ c1

∫
Z

|yn(z)|r
‖xn‖p−r

dz → 0, as n→∞( since r < p).

Thus by passing to the limit in (2) and using the weak lower semicontinuity of
the norm functional, we obtain ‖Dy‖pp = 0 =⇒ y = ξ ∈ R. Note that yn → ξ in
W 1,p(Z) and because ‖yn‖ = 1, for n ≥ 1, we infer that ξ �= 0. We may assume
without loss of generality that ξ > 0. Then xn(z) → +∞, a.e. on Z. Also let
x∗n ∈ ∂ϕ(xn), n ≥ 1, such that m(xn) = ‖x∗n‖. The existence of such an element
follows from the fact that ∂ϕ(xn) is w-compact and x∗ -→ ‖x∗‖ is weakly lower
semicontinuous onW 1,p(Z)∗. From the choice of the sequence {xn}n≥1 ⊆W 1,p(Z)
we have |〈x∗n, xn〉| ≤ εn, with εn ↓ 0 and 〈·, ·〉 being the duality brackets for
the pair

(
W 1,p(Z), W 1,p(Z)∗

)
. Let A : W 1,p(Z) → W 1,p(Z)∗ be the nonlinear

operator defined by

〈A(x), y〉 =
∫
Z

‖Dx(z)‖p−2 (Dx(z), Dy(z))RN dz, for all x, y ∈W 1,p(Z).

It is easy to check that A is demicontinuous, monotone, thus it is maximal (see
Hu-Papageorgiou [14], p. 309). For every n ≥ 1, we have x∗n = A(xn) − u∗n, with
u∗n ∈ ∂J(xn), where J : W 1,p(Z) −→ R is the integral functional defined by

J(x) =
∫
Z

j(z, x(z))dz. If J1 : Lp(Z) −→ R is defined by J1(x) =
∫
Z

j(z, x(z))dz,

then J = J1 |W 1,p(Z) and both are locally Lipschitz. Moreover, from Chang [4]
(theorem 2.2) we have that ∂J(x) ⊆ ∂J1(x) = Sq∂j(·,x(·)) = {u∗ ∈ Lq(Z) : u∗(z) ∈
∂j(z, x(z)) a.e. on Z} ⊆ Lq(Z) (see Clarke [5], p. 83). So we have

〈x∗n, xn〉 = ‖Dxn‖pp −
∫
Z

u∗n(z)xn(z)dz ≤ εn.

We consider the direct -sum decomposition W 1,p(Z) = R ⊕ V , with V = {v ∈
W 1,p(Z) :

∫
Z

v(z)dz = 0}. So we can write xn = xn + x̂n with xn ∈ R and

x̂n ∈ V, n ≥ 1 and we we have

‖Dx̂n‖pp −
∫
Z

u∗n(z)xn(z)dz ≤ εn. (3)

From the definition of the Clarke subdifferential (see section 2) we have

u∗n(z)xn(z) ≤ j0(z, xn(z)) = lim sup
vn→xn(z)

ε↓0

j(z, vn + ε xn(z))− j(z, vn)
ε

.

Recall that for almost all z ∈ Z, xn(z)→ +∞ as n→∞. So vn → +∞ as n→∞.
Hence by virtue of hypothesis H(j) (v), given ε > 0 we can find n0(ε) ≥ 1 such
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that for all n ≥ n0 and all z ∈ Z \N1, |N1| = 0 (| · | being the Lebesgue measure
on RN ), we have j+(z) − ε2 ≤ j(z, vn + εxn(z)) ≤ j+(z) + ε2 and j+(z) − ε2 ≤
j(z, vn) ≤ j+(z) + ε2. So for all n ≥ n0 and all z ∈ Z \N1, we have

u∗n(z)xn(z) ≤
j+(z) + ε2 − j+(z) + ε2

ε
=

2ε2

ε
= 2ε

and

u∗n(z)xn(z) ≥
j+(z)− ε2 − j+(z)− ε2

ε
=
−2ε2
ε

= −2ε.

Therefore for all n ≥ n0 and all z ∈ Z \ N1, we have |u∗n(z)xn(z)| ≤ ε, hence
u∗n(z)xn(z) → 0 as n → ∞ uniformly for almost all z ∈ Z and so it is fulfilled

that
∫
Z

u∗n(z)xn(z)dz → 0 as n → ∞. Thus if we pass to the limit as n → ∞ in

(3), we obtain ‖Dx̂n‖pp → 0 as n → ∞. This by virtue of the Poincaré-Wirtinger
inequality (see Hu-Papageorgiou [15], p. 866) implies that x̂n → 0 in W 1,p(Z) as
n→∞.

Let Γn(z) = {(v∗, λ) ∈ R× (0, 1) : v∗ ∈ ∂j(z, xn + λx̂n(z)), j(z, xn + x̂n(z))−
j(z, xn) = v∗xn(z). From the Lebourg mean value theorem, we have that for
almost all z ∈ Z, Γn(z) �= ∅. By redefining Γn on the exceptional Lebesgue-null
set (setting Γn to be equal to {0}, for example), we may assume without any loss
of generality that Γn(z) �= ∅ for all z ∈ Z. We claim that for every h ∈ R, the
function (z, λ) -→ j0(z, xn + λx̂n(z);h) is measurable. Indeed, from the definition
of the generalized directional derivative, j0(z, xn + λx̂n(z);h) equals to

inf
m≥1

sup
r,s ∈ Q ∩ (−1/m, 1/m)

j(z, xn + λx̂n(z) + r + sh)− j(z, xn + λx̂n(z) + r)
s

.

But j(z, x) is jointly measurable (see Hu-Papageorgiou [14], p.142). So it follows
that (z, λ) -→ j0(z, xn+λx̂n(z);h) is measurable. Let Sn(z, λ) = ∂j(z, xn+λx̂n(z))
and {hm}m≥1 ⊆ R be a countable dense set. Because j0(z, xn + λx̂n(z); ·) is con-
tinuous, we have

GrSn = {(z, λ, u) ∈ Z × (0, 1)× R : u ∈ Sn(z, λ)}
=
⋂
m≥1

{(z, λ, u) ∈ Z × (0, 1)× R : uhm ≤ j0(z, xn + λx̂n(z);hm)},

so GrΓn = GrSn
⋂
{(z, v∗, λ) ∈ Z × R × (0, 1) : j(z, xn + x̂n(z)) − j(z, xn) =

v∗x̂n(z)} ∈ L ×B(R)×B(0, 1), with L being the Lebesgue σ-field of Z. Invoking
the Yankov-von-Neumann-Aumann selection theorem (see Hu-Papageorgiou [14],
p. 158), we obtain measurable functions v∗n : Z −→ R and λn : Z −→ (0, 1) such
that (v∗n(z), λn(z)) ∈ Γn(z) a.e. on Z. Therefore we have

j(z, xn + x̂n(z))− j(z, xn) = v∗n(z)x̂n(z), v
∗
n(z) ∈ ∂j(z, xn + λx̂n(z)), a.e. on Z,

for all n ≥ 1. Thus we can write that

ϕ(xn) =
1
p
‖Dxn‖pp −

∫
Z

v∗n(z)x̂n(z)dz −
∫
Z

j(z, xn)dz. (4)
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Arguing as before, we can show that
∫
Z

v∗n(z)x̂n(z)dz → 0 as n → ∞ (note

that xn → +∞ since xn(z) → +∞ a.e. on Z and {x̂n(z)}n≥1 is bounded for
almost all z ∈ Z (recall that x̂n → 0 in W 1,p(Z))). Also we know that ‖Dxn‖p =
‖Dx̂n‖p → 0 as n → ∞. So by passing to the limit as n → ∞ in (4), we obtain

that c = −
∫
Z

j+(z)dz, a contradiction. Similarly, if we assume that ξ < 0, we

reach the contradiction that c = −
∫
Z

j−(z)dz.

Therefore {xn}n≥1 ⊆W 1,p(Z) is bounded and so we may assume that xn
w−→ x

in W 1,p(Z) and xn → x in Lp(Z). We have |〈x∗n, xn−x〉| ≤ εn, with εn ↓ 0, which
implies that 〈A(xn), xn − x〉 −

∫
Z

u∗n(xn − x)dz ≤ εn, n ≥ 1.

By virtue of hypothesis H(j) (iii), {u∗n}n≥1 ⊆ L r′(Z) ⊆ Lq(Z) is bounded

(1/r + 1/r′ = 1 and r < p). So
∫
Z

u∗n(xn − x)dz → 0. It follows that

lim sup〈A(xn), xn − x〉 ≤ 0 and because A is maximal monotone, it is general-
ized pseudomonotone (see Hu-Papageorgiou [14], p. 365) and so 〈A(xn), xn〉 →
〈A(x), x〉, hence ‖Dxn‖p → ‖Dx‖p. Because Dxn w−→ Dx in Lp(Z,RN ) and the
latter is a uniformly convex Banach space, it follows that Dxn → Dx in Lp(Z,RN )
(see Hu-Papageorgiou[14], p. 28) and so xn → x in W 1,p(Z).

Proposition 2. If hypotheses H(j) hold, then ϕ is bounded below and ϕ |V≥ 0.

Proof. By virtue of hypothesis H(j) (v), we can find N2 ⊆ Z Lebesgue-null set
and M2 > 0 such that

|j(z, x)− j+(z)| ≤ 1, for all z ∈ Z \N2 and all x ≥M2

and
|j(z, x)− j−(z)| ≤ 1, for all z ∈ Z \N2 and all x ≤ −M2 .

Also because |j(z, x)| ≤ a1(z)+ c1|x|r a.e. on Z with a1 ∈ L1(Z), c1 > 0 (see the
proof of proposition 1) we have that for almost all z ∈ Z \N2 and all |x| ≤ M2,
|j(z, x)| ≤ a2(z) with a2 ∈ L1(Z). So for all x ∈ W 1,p(Z) we have

ϕ(x) =
1
p
‖Dx‖pp −

∫
Z

j(z, x(z))dz

≥ −
∫
{x(z)≥M2}

j(z, x(z))dz −
∫
{x(z)≤−M2}

j(z, x(z))dz −

−
∫
{|x(z)|≤M2}

j(z, x(z))dz ≥

≥ −‖j+‖1 − ‖j−‖1 − 2|Z| − ‖a2‖1,

which implies that ϕ is bounded from below.
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For v ∈ V , recall that ‖Dv‖pp ≥ λ1‖v‖pp (see section 2). So using hypothesis
H(j) (iv) for all v ∈ V we have

ϕ(v) =
1
p
‖Dv‖pp −

∫
Z

j(z, v(z))dz ≥ 1
p
‖Dv‖pp −

λ1
p
‖v‖pp ≥ 0.

Using these two auxiliary results we can prove the following multiplicity theo-
rem for problem (1).

Theorem 3. If hypotheses H(j) hold, then problem (1) has at least three distinct
solutions.

Proof. We introduce the following open subsets of W 1,p(Z)

U± = {x = ±η + v : η > 0, v ∈ V }.

Letm± = inf [ϕ(x) : x ∈ U±] > −∞ (see proposition 2). Also let ϕ± :W 1,p(Z) −→
R = R ∪ {+∞} be defined by

ϕ±(x) =

ϕ(x), if x ∈ U ±

+∞, otherwise

Both functions ϕ± are lower semicontinuous and bounded below. In what fol-
lows we shall work with ϕ+ but a similar analysis can be conducted using ϕ−.

Invoking theorem 1.1 of Zhong [25] with ε =
1
n
, n ≥ 1, we generate a sequence

{xn}n≥1 ⊆ U+ such that ϕ(xn) ↓ m+ and

ϕ+(xn) ≤ ϕ+(y) +
1
n
‖xn − yn‖
1 + ‖xn‖

, for all y ∈ W 1,p(Z),

=⇒
− 1
n
‖xn − yn‖

1 + ‖xn‖
≤ ϕ+(y)− ϕ+(xn), for all y ∈ W 1,p(Z).

Let u ∈ W 1,p(Z) and set y = xn + tu, t > 0. Since U+ is open for t ∈ (0, δ) we
have y ∈ U+. So

− 1
n
‖u‖

1 + ‖xn‖
≤ ϕ(xn + tu)− ϕ(xn)

t
, t ∈ (0, δ), (recall ϕ+ |U+= ϕ+),

=⇒
− 1
n
‖u‖

1 + ‖xn‖
≤ ϕ0(xn;u), (see section 2), for all u ∈W 1,p(Z).
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Introduce ϑn(u) =
1 + ‖xn‖

1
n

ϕ0(xn;u), n ≥ 1. Evidently, ϑn is continuous,

sublinear ( hence ϑn(0) = 0 ) and for all u ∈ W 1,p(Z) we have −‖u‖ ≤ ϑn(u). So
we can apply lemma 1.3 of Szulkin [24] to obtain y∗n ∈ W 1,p(Z)∗ such that ‖y∗n‖ ≤ 1

and 〈y∗n, u〉 ≤ ϑn(u), for all u ∈ W 1,p(Z) and all n ≥ 1. If x∗n =

1
n

1 + ‖xn‖
y∗n we

have 〈x∗n, u〉 ≤ ϕ0(xn;u) for all u ∈W 1,p(Z), n ≥ 1. So xn ∈ ∂ϕ(xn) for all n ≥ 1.
We have

(1 + ‖xn‖)m(xn) ≤ (1 + ‖xn‖)‖x∗n‖ ≤
1
n
−→ 0, as n→∞.

Recall that ϕ(xn) ↓ m+ and m+ ≤
∫
Z

j(z, c+)dz <
∫
Z

j+dz < 0 (see hy-

pothesis H(j) (vi)). From proposition 1 we know that ϕ satisfies the nonsmooth
Cm+ -condition. So by passing to a subsequence if necessary, we may assume that
xn → y1 in W 1,p(Z). We have ϕ(xn) → ϕ(y1) = m+ < 0. If y1 ∈ bd U+ = V ,
then ϕ(y1) = m+ ≥ 0 (see proposition 2), a contradiction. Therefore y1 ∈ U+

and it follows that y1 is a local minimum of ϕ, hence 0 ∈ ∂ϕ(y1). With a similar
argument we obtain y2 ∈ U− such that 0 ∈ ∂ϕ(y2) and of course y1 �= y2 �= 0.

Finally because of hypothesis H(j) (vi) and the fact that ϕ |V≥ 0, we can
apply the nonsmooth Saddle Point Theorem (see Kourogenis-Papageorgiou [18])

and produce y3 ∈ W 1,p(Z) such that ϕ(y3) = c ≥ 0 −
∫
Z

j±(z)dz > m± and

0 ∈ ∂ϕ(y3).
Now let y = yk, k = 1, 2, 3. We have 0 ∈ ∂ϕ(y) and so

A(y) = u∗, for some u∗ ∈ ∂J(x) ⊆ Lq(Z) (5)

(see the proof of proposition 1).
Let ψ ∈ C∞

0 (Z). Since −div(‖Dy‖p−2 Dy) ∈ W−1,q(Z) = W 1,p
0 (Z)∗ (see for

example Adams [1], p. 50), by integration by parts we obtain

〈A(y), ψ〉 = 〈−div(‖Dy‖p−2 Dy), ψ〉 =
∫
Z

u∗ψ dz = 〈u∗, ψ〉.

But C∞
0 (Z) is dense in W 1,p

0 (Z), so we obtain

−div(‖Dy(z)‖p−2 Dy(z)) = u∗(z) ∈ ∂j(z, y(z)), a.e. on Z. (6)

Also from the “quasilinear ” Green’s identity (see Kenmochi [17], Casas-Fernandez
[3] or Hu-Papageorgiou [15], p. 867), for every v ∈W 1,p(Z) we have∫

Z

(−div(‖Dy‖p−2 Dy)) v dz +
∫
Z

‖Dy‖p−2(Dy,Dv)RN dz =
〈
∂x

∂np
, γ(v)

〉
Γ
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with 〈·, ·〉Γ being the duality brackets for the pair
(
W 1/q, p(Γ ), W−1/q, q(Γ )

)
and

γ :W 1,p(Z) −→ Lp(Γ ) is the trace operator. From (5) and (6) we obtain

0 =
∫
Z

−u∗ v dz + 〈A(y), v〉 =
〈
∂x

np
, γ(v)

〉
Γ

.

But γ
(
W 1,p(Z)

)
=W 1/q, p(Γ ) (see Kufner-John- Fučik [19], p. 338). So it follows

that
∂x

∂np
= 0. Therefore y1, y2, y3 are distinct solutions of (1).

As a simple example of a function which satisfies hypotheses H(j), consider
the following locally Lipschitz nonsmooth potential j(x) (for simplicity we drop
the z- dependence):

j(x) =


λ1
p
|x|p, if |x| ≤ 1

a

x2
+
λ1
p
− a, if |x| ≥ 1

, with p a < λ1, a > 0,

=⇒ ∂j(x) =



λ1|x|p−2x, if |x| < 1

[−2a, λ1], if |x| = 1

−2a
x3
, if |x| > 1.

Clearly, j± =
λ1
p
− a > 0 and so we can have c± = ±1. Then j(c±) =

λ1
p
>

λ1
p
− a = j±. Also clearly pj(x) ≤ λ1|x|p for all x ∈ R and finally for all x ∈ R

and all u∗ ∈ ∂j(x), we have |u∗| ≤M0, M0 > 0. So hypotheses H(j) are satisfied.
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