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Abstract. We investigate some asymptotic properties of the nonlinear
forced difference system

∆(rkΦα(∆xk))− σϕkf(yk+1) = σϕ̂k,

∆(qkΦβ(∆yk))− ψkg(xk+1) = ψ̂k.

In particular we give necessary and sufficient conditions for existence of the
so-called regularly decaying solutions and thereby we complete the results
presented in [10].
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1 Introduction

In [10] the authors investigated certain discrete asymptotic boundary value prob-
lems on the discrete interval [m,∞) := {m,m + 1, ..},m ∈ Z, associated to the
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nonlinear forced difference system

∆(rkΦα(∆xk))− σϕkf(yk+1) = σϕ̂k,

∆(qkΦβ(∆yk))− ψkg(xk+1) = ψ̂k.
(1)

In particular, necessary and sufficient conditions for the existence of the so-called
strongly decaying solutions of (1) were presented. The principal aim of this con-
tribution is to complete those results examining also the existence of the so-called
regularly decaying solutions. For the definitions of these concepts see Definition 1.
In system (1) we assume that {ϕk}, {ψk}, {rk}, {qk} are real positive sequences de-
fined for any k ≥ m, the forcing terms {ϕ̂k}, {ψ̂k} are real nonnegative sequences
defined for any k ≥ m, Φp(u) = |u|p−1sgnu with p > 1 is the one-dimensional
p-laplacian operator, f, g : R+ → R+ are monotone continuous functions and
σ ∈ {−1, 1}.

There are several motivations for the investigation of (1):
• System (1) arises in the discretization process of differential systems with

p-laplacian operator. For results concerning the role of system (1) in various appli-
cations, we refer the reader to [6], [9], [12] and to the references contained therein.
• The study of system (1) is motivated also by certain results obtained for

scalar second order difference equations of the form

∆(rkΦα(∆xk)) = σϕkf(xk+1),

which attracted a considerable attention in recent years, see, e.g., [2], [3], [4], [7], [8],
[11], [15]. Other interesting contributions can be found also in the monograph [1].
• System (1) can be rewritten in the form of a fourth-order nonlinear equation

of the type
∆2(rk∆2uk) + pkf(uk+2) = 0.

For results from this point of view see for instance [13], [14].

Here we are interested in the existence of positive nonoscillatory solutions,
which are asymptotically decreasing towards zero. A nonoscillatory solution of (1)
is a vector sequence (x, y) = ({xk}, {yk}) satisfying (1) for k ≥ m, and such that
both components {xk}, {yk} are eventually of fixed sign.

Definition 1. A solution (x, y) of (1) is said to be

– decaying, if x, y are eventually positive decreasing and

lim
k→∞

xk = 0 = lim
k→∞

yk;

– regularly decaying, if it is decaying and

lim
k→∞

rkΦα(∆xk) = −Ax, lim
k→∞

qkΦβ(∆yk) = −By,

where Ax, By are positive constants;
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– strongly decaying, if it is decaying and limk→∞ qkΦβ(∆yk) = 0,

lim
k→∞

rkΦα(∆xk) =
{
−Cx for σ = −1,
0 for σ = 1,

where Cx is a positive constant.

Note that the constant Cx cannot be zero when σ = −1, since in this case the
quasidifference rkΦα(∆xk) is eventually negative decreasing.

As already mentioned at the beginning of this section, the main purpose of this
paper is to complete the results presented in [10], in which the existence of strongly
decaying solutions is considered. To this end we will give here necessary and suf-
ficient conditions for existence of regularly decaying solutions (see Section 2), in
view of their crucial role in a variety of physical applications, as already claimed.
We will also restate the main results proved in [10] in order to have a comparison
with our new results (see Section 3). Note that both the regular case (i.e. with the
nonlinearities f, g bounded in a right neighborhood of zero) and the singular case
(i.e. with f or g unbounded in a right neighborhood of zero) will be considered.
Some remarks and comments are given throughout this contribution.

Finally, nontrivial prototypes of nonlinearities f, g are the one-dimensional
Laplacians Φγ , Φδ, respectively, with γ, δ �= 1 (i.e., with possible singularities at
zero). Then (1) leads to the Emden-Fowler type system

∆(rkΦα(∆xk)) = σϕkΦγ(yk+1)
∆(qkΦβ(∆yk)) = ψkΦδ(xk+1)

(2)

as a special case.
Some of our main results remain valid for more general systems of the form

∆(rkα(∆xk)) = σF (k, yk+1, xk+1)
∆(qkβ(∆yk)) = G(k, xk+1, yk+1),

(3)

where the functions α and β are monotone continuous increasing with α(0) = 0 =
β(0), and F,G are positive continuous on {m,m+1, . . .}× (0, ε]× (0, ε] with some
ε > 0 and bounded with respect to the third variable.

2 Regularly Decaying Solutions

Denote with α∗ the conjugate number of α i.e. 1/α+ 1/α∗ = 1, and analogously
for β. The following necessary and sufficient condition holds:

Theorem 2. System (1) has at least one regularly decaying solution if and only
if

∞∑
k=m

Φα∗

(
1
rk

)
<∞,

∞∑
k=m

Φβ∗

(
1
qk

)
<∞, (4)

∞∑
k=m

ϕ̂k <∞,
∞∑

k=m

ψ̂k <∞, (5)
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and there exist A > 0, B > 0 such that

∞∑
k=m

ϕk f

 ∞∑
j=k+1

Φβ∗

(
A

qj

) <∞, (6)

∞∑
k=m

ψk g

 ∞∑
j=k+1

Φα∗

(
B

rj

) <∞. (7)

In addition, if σ = 1, then this solution is decreasing for any k ≥ m.

Proof. The “if part”. Choose an integer T ≥ m such that

∞∑
k=T

ϕk f

 ∞∑
j=k+1

Φβ∗

(
1
qj

) < 1/2,
∞∑

k=T

ψk g

 ∞∑
j=k+1

Φα∗

(
1
rj

) < 1/2.

Denote with ^∞T the Banach space of all bounded sequences defined for k ≥ T ,
endowed with the topology of the supremum norm, and consider the set Ω ⊂
^∞T × ^∞T given by

Ω =

(u, v) = ({uk}, {vk}) ∈ ^∞T × ^∞T :
∞∑

j=k+1

Φα∗

(
M1

rj

)
≤

≤ uk ≤
∞∑

j=k+1

Φα∗

(
M2

rj

)
,

∞∑
j=k+1

Φβ∗

(
N1

qj

)
≤ vk ≤

∞∑
j=k+1

Φβ∗

(
N2

qj

) ,

where M1, N1,M2, N2 are suitable positive constants which will be determined
later. Consider the operator T : Ω → ^∞T × ^∞T defined by

T (u, v) = (T1(v), T2(u)) = ({(T1(v))k}, {(T2(u))k}),

where

(T1(v))k =
∞∑
j=k

Φα∗

Mτ(σ)

rj
+
σ

rj

∞∑
i=j

[ϕif(vi+1) + ϕ̂i]

 ,
(T2(u))k =

∞∑
j=k

Φβ∗

N1

qj
+

1
qj

∞∑
i=j

[
ψig(ui+1) + ψ̂i

]
with τ(σ) = 1 for σ = 1 and τ(σ) = 2 for σ = −1. In order to show that T has
a fixed point in Ω, for the Schauder-Tychonoff fixed point theorem it is sufficient
to verify that: (i) Ω is a nonempty, closed and convex subset of ^∞T × ^∞T , (ii)
T (Ω) ⊆ Ω, (iii) T (Ω) is relatively compact, (iv) T is continuous in Ω.
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The validity of (i) is obvious, and furthermore it is not difficult to show that
T maps Ω into itself, i.e. (ii) holds. To show it, if f, g are nondecreasing it is
sufficient to choose M1 = N1 = 1/2 and M2 = N2 = 1. If f, g are nonincreasing
we choose M1 = N1 = 1,M2 = N2 = 3/2, and finally, when f is nondecreasing
and g is nonincreasing, or vice versa, it is sufficient to choose M1 = N2 = 1,M2 =
3/2, N1 = 1/2, or N1 =M2 = 1,M1 = 1/2, N2 = 3/2, respectively.

(iii) To show that T (Ω) is relatively compact it is sufficient to prove that T (Ω)
is uniformly Cauchy in the topology of ^∞T × ^∞T by [4, Theorem 3.3], i.e. for any
ε > 0 there exists N ≥ T such that for any k, l ≥ N it holds

|(T1(v))k − (T1(v))l| < ε and |(T2(u))k − (T2(u))l| < ε

for (u, v) ∈ Ω. The details are left to the reader.
(iv) The continuity of T in Ω can be proved using a similar argument to that in

the proof of [10, Theorem 1], namely using the discrete analogue of the Lebesgue
dominated convergence theorem, since the series occuring in the definition of the
operator T are totally convergent.

Thus the Schauder fixed point theorem can be applied and the operator T has
a fixed point (x, y) ∈ Ω. It is easy to see that (x, y) is a regularly decaying solution
of (1) for k ≥ T .

To show that this solution can be extended to the left in a decreasing manner
for σ = 1 we use the fact that system (1) is actually a recurrence relation. We
proceed in the same way as it is done in the proof of [10, Theorem2].

The “only if part”. Let (x, y) be a regularly decaying solution of (1). Then
there exist positive constants M1,M2, N1, N2 and T ≥ m such that∑∞

j=k Φα∗
(
M1
rj

)
≤ xk ≤

∑∞
j=k Φα∗

(
M2
rj

)
,∑∞

j=k Φβ∗
(
N1
qj

)
≤ yk ≤

∑∞
j=k Φβ∗

(
N2
qj

) (8)

for k ≥ T . Assume f, g nondecreasing; the remaining cases can be treated similarly.
Summing twice both equations in (1) from k to ∞ we get

xk = σ
∑∞

j=k Φα∗
(

1
rj

∑∞
i=j(ϕif(yi+1) + ϕ̂i)

)
,

yk =
∑∞

j=k Φβ∗

(
1
qj

∑∞
i=j(ψig(xi+1) + ψ̂i)

)
.

(9)

Now (8) and (9) imply the conditions (4), (5), (6) and (7), that leads to the
assertion. @A

Remark 3. Note that the necessary and sufficient conditions in Theorem 2 are the
same for both cases σ = ±1 in spite of the fact that different sign condition causes
a different dynamical behavior as regards other types of solutions.

Remark 4. Using similar arguments to those in the above proof, we are able to
prove the “if part” for more general system (3), where the first condition in (4)
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is replaced by
∑∞

k=m α
−1(1/rj) < ∞, α−1 being the inverse of the function α.

Instead of (6) we suppose the existence of certain “upper” functions ϕ̄, F̄ such
that F (k, u, v) ≤ ϕ̄kF̄ (u) on {m,m+ 1, . . . } × (0, ε]× (0, ε], where ϕ̄, F̄ satisfy

∞∑
k=m

ϕ̄k F̄

( ∞∑
j=k+1

β−1

(
1
qj

))
<∞,

β−1 being the inverse of β. The latter condition in (4) and (7) would be rearranged
in a similar way. Obviously, a necessary condition in the above sense cannot be
stated in this case.

Remark 5. Closer examination of the proof enables us to obtain an asymptotic
estimate for regularly decaying solutions. Indeed, it is not difficult to see that xk
is asymptotic to

∑∞
j=k Φα∗(1/rj), while yk is asymptotic to

∑∞
j=k Φβ∗(1/qj).

Remark 6. Finally note that, besides the regular case, the statement of Theo-
rem 2 includes the singular one as well, i.e. when f, g are unbounded in a right
neigborhood of zero. It should be emphasized that we do not require any additional
conditions to treat this case.

3 Strongly Decaying Solutions

For sake of completeness in this section we recall some results that were proved
in [10] in order to have “complementary” statements. We start with a necessary
and sufficient criterion guaranteeing the existence of strongly decaying solutions
of system (1) with σ = −1.

Theorem 7 ([10], Theorem 1). System (1) with σ = −1 has strongly decaying
solutions if and only if condition (5) and

∞∑
k=m

Φα∗

(
1
rk

)
<∞

hold, and there exists a constant A > 0 such that
∞∑

k=m

ϕkf

( ∞∑
j=k+1

ωj(A)
)
<∞, (10)

where

ωk(A) = Φβ∗

{
1
qk

∞∑
j=k

[
ψj g

( ∞∑
i=j+1

Φα∗

(
A

rj

))
+ ψ̂j

]}
<∞.

Remark 8. In the contrast to the existence of regularly decaying solutions, the
first condition in (4) is not necessary in Theorem 7. On the other hand, if the
first condition in (4) holds, then condition (10) can be relaxed to simpler (but
only sufficient) conditions (6), (7). Thus we have analogous sufficient conditions
guaranteeing the existence of both regular and strongly decaying solutions of (1)
with σ = −1. See Remark 13 for additional information concerning the case σ = 1.
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Remark 9. The proof of Theorem 7 gives an asymptotic estimate for strongly
decaying solutions. However, in the contrast to the case in Section 2, we have
an asymptotic estimate only for the first component. In fact, xk is asymptotic to∑∞

j=k Φα∗(1/rj).

In the case of system (1) with σ = 1, the following existence result holds.

Theorem 10 ([10], Theorem 2). Let f, g be nondecreasing. Suppose that

at least one of the forcing terms {ϕ̂k}, {ψ̂k} is eventually nontrivial. (11)

If

∞∑
k=m

Φα∗

(
1
rk

∞∑
j=k

(ϕj + ϕ̂j)
)
<∞,

∞∑
k=m

Φβ∗

(
1
qk

∞∑
j=k

(ψj + ψ̂j)
)
<∞, (12)

then system (1) with σ = 1 has at least one strongly decaying solution that is
decreasing for any k ≥ m.

Remark 11. Observe that condition (4) is not necessary. On the other hand, The-
orem 10 requires the convergence of the series

∑∞
j=m ϕj and

∑∞
j=m ψj .

When at least one of the series
∑∞

j=m ϕj and
∑∞

j=m ψj diverges, we can state
the following criterion.

Theorem 12 ([10], Theorem 3). Let f, g be nondecreasing. If (11), (4), (5),
(6), (7) hold, then system (1) with σ = 1 has at least one strongly decaying solution
that is decreasing for any k ≥ m.

Remark 13. If f, g are nondecreasing and (11) holds, then the conditions of The-
orem 2 are sufficient for the existence of both regularly and strongly decaying
solution of (1) with σ = 1 and with σ = −1 as well.

Remark 14. In the contrast to Theorems 2 and 7, the presence of forcing terms
plays an important role in Theorems 10 and 12 for proving the existence of strongly
decaying solutions. On the other hand, as it is shown in [10], there exist discrete
nonforced systems having strongly decaying solutions. The problem of finding suf-
ficient conditions for nonforced discrete systems to have singular solutions remains
open; in the continuous case this problem can be solved using the concept of sin-
gular solution (see [12]) that however has no discrete counterpart.
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