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Abstract. For analysis of bifurcation of planar systems is sometimes used
a result first obtained probably by Diliberto. This result is here partially
extended to certain class of autonomous ordinary differential equations in
R

3.
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1 Main results

Andronov and his coworkers were able, in their famous book [1], to derive an
effective theorem about continuation of periodic solutions of a two dimensional
system. Chicone [2] achieved similar result but with substantially greater elegance
using a result first published by Diliberto [3]:

Theorem 1. Let F = (p, q) be a C1 2-vector function defined on an open subset
of R2. Let (ϕ(t, x0, y0), ψ(t, x0, y0)) be the solution of plane initial problem

ẋ = p(x, y) x(0) = x0, (1)

ẏ = q(x, y) y(0) = y0.

If |p(x0, y0)| + |q(x0, y0)| > 0, then the principal fundamental matrix Y (t) of
(1) at t = 0 of the homogeneous variational equation

u̇ =
∂p(ϕ(t, x0, y0), ψ(t, x0, y0))

∂x
u+

∂p(ϕ(t, x0, y0), ψ(t, x0, y0))
∂y

v
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v̇ =
∂q(ϕ(t, x0, y0), ψ(t, x0, y0))

∂x
u+

∂q(ϕ(t, x0, y0), ψ(t, x0, y0))
∂y

v

is such that

Y (t)F�(x, y) = a(t, x, y)F ((ϕ(t, x, y), ψ(t, x, y))+ b(t, x, y)F�(ϕ(t, x, y), ψ(t, x, y))

and Y (t)F (x, y) = F ((ϕ(t, x, y), ψ(t, x, y)), where

b(t, x, y) =
p2(x, y) + q2(x, y)

p2(ϕ(t, x, y), ψ(t, x, y)) + q2(ϕ(t, x, y), ψ(t, x, y))
×

× exp
{∫ t

0

∂p(ϕ(s, x, y), ψ(s, x, y))
∂x

+
∂q(ϕ(s, x, y), ψ(s, x, y))

∂y
ds

}
. (2)

In his book Chicone [2] was able to obtain an interesting geometrical identifi-
cation for the function b(t, x, y).

Nowadays we are able to extend Diliberto’s result on many differential systems
in Rn and the results will be published elsewhere. In this short announcement we
shall limit ourselves to a three-dimensional system

ẋ = f(x), (3)

fulfilling the following hypotheses:

H1 the function f : Rn → Rn is a C1 function with open domain,

H2 all solutions of (3) are defined on [0,∞),
H3 the system (3) has a nondegenerate first integral ([4, p.114]) g : Rn → Rn and

g ∈ C2.

If ϕ(t, x) is the solution of the initial problem (3), ϕ(t, 0) = x, then the first integral
g yields a two-dimensional submanifoldM generated as the level set of g containing
the point x. Clearly the unit surface normal n(x) := ‖gradg(x)‖−1gradg(x) is well
defined and is C1 on M . Moreover we may suppose that

H4 there are two C1 functions a1(x), a2(x) onM such that ‖a1(x)‖ =‖a2(x)‖ = 1
and TxM := span{a1(x), a2(x)}.

Finally denoting the usual inner product as 〈.|.〉 and the usual cross-product as
[.|.], we may state Diliberto’s theorem for three-dimensional systems (3) with a
first integral.

Theorem 2. Let hypotheses H1, H2, H3, H4 be fulfilled and ϕ(t, x) denote the
solution of the differential equation (3), ϕ(0, x) = x. If f(x) �= 0, then the principal
fundamental matrix Y (t) at t = 0 of the variational equation ẏ = Df(ϕ(t, x))y is
such that Y (t)f(x) = f(ϕ(t, x)),

Y (t)[n(x)|f(x)] = a(t, x)f(ϕ(t, x)) + b(t, x)[n(ϕ(t, x))|f(ϕ(t, x))],
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and

b(t, x) =
‖f(x)‖2

‖f(ϕ(t, x))‖2 exp
∫ t

0

{
〈a1|(Df)a1〉

+ 〈a2|(Df)a2〉 − 〈a1|(Da1)f〉+ 〈a2|(Da2)f〉
}
(ϕ(s, x)) ds. (4)

As an application let us present the following theorem concerning the Poincaré
mapping of the system (3):

Theorem 3. Let the hypotheses H1, H2, H3 and H4 be fulfilled. Let x1 ∈ M ,
f(x1) �= 0 and x1 = ϕ(p, x1), where 0 < p <∞ is the first time with this property.
Let Σ be a plane containing x1 and orthogonal to f(x1). Let Ψ : U ⊂ Σ → Σ be
the Poincaré mapping. If v ∈ Tx1Σ ∩ Tx1M , then

DΨ(x1)v =
〈v1|[n(x1)|f(x1)]〉

‖f(x1)‖2
b(p, x1)[n(x1)|f(x1)].
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