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The function p ∈ C[R × [−1, 0],R] is called a p -function if it has the following
properties: p(t, 0) = t, p(t,−1) is a nondecreasing function of t and there exists
a σ ≥ −∞ such that p(t, ϑ) is an increasing function in ϑ for each t ∈ (σ,∞)
(see [2]). For t ∈ [t0, t0 +A) with A > 0 we define yt(ϑ) = y(p(t, ϑ)), −1 ≤ ϑ ≤ 0.
Consider the system

ẏ(t) = f(t, yt) (1)

where f ∈ C[[t0, t0 + A) × C,Rn] with C = [[−1, 0],Rn]. This system is called the
system of p -type retarded functional differential equations ([2]).
We say that the functional g ∈ C(Ω,R) is strongly decreasing (increasing) with
respect to the second argument on Ω ⊂ R × C if for each (t, ϕ), (t, ψ) ∈ Ω with
ϕ(p(t, ϑ)) 7 ψ(p(t, ϑ)), ϑ ∈ [−1, 0): g(t, ϕ) − g(t, ψ) > 0 (< 0). Let k 6 0 and µ
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be constant vectors, µi = −1, i = 1, . . . , p and µi = 1, i = p + 1, . . . , n. Let λ(t)
denote a real vector with continuous entries on [ p∗,∞), p∗ = p(t∗,−1). Put

T (k, λ)(t) ≡ keµ
∫ t
p∗ λ(s)ds =

(
k1e

µ1
∫ t
p∗ λ1(s)ds, . . . , kne

µn
∫ t
p∗ λn(s)ds

)
.

Theorem 1. Suppose Ω = [t∗,∞)× C, f ∈ C(Ω,Rn) is locally Lipschitzian with
respect to the second argument and, moreover:

(i) f(t, 0) ≡ 0 if t ≥ t∗.

(ii) The functional fi is strongly decreasing if i = 1, . . . , p and strongly increasing
if i = p+ 1, . . . , n with respect to the second argument on Ω.

Then for the existence of a positive solution y = y(t) on [ p∗,∞) of the sys-
tem (1) a necessary and sufficient condition is that there exists a vector λ ∈
C([ p∗,∞),Rn), such that λ 6 0 on [t∗,∞), satisfying the system of integral in-
equalities

λi(t) ≥
µi
ki

e−µi
∫ t
p∗ λi(s)ds · fi (t, T (k, λ)t) , i = 1, . . . , n

for t ≥ t∗, with a positive constant vector k.

Consider the equation

ẏ(t) = −
∫ t

τ(t)

K(t, s)y(s)ds, (2)

where K : [t∗,∞) × [ p∗,∞) → R+ is a continuous function, and τ : [t∗,∞) →
[ p∗,∞) is a nondecreasing function with τ(t) < t.

Theorem 2. The equation (2) has a positive solution y = y(t) on [ p∗,∞) if and
only if there exists a function λ ∈ C([ p∗,∞),R), such that λ(t) > 0 for t ≥ t∗ and

λ(t) ≥
∫ t

τ(t)

K(t, s)e
∫ t
s
λ(u)du ds

on the interval [t∗,∞).

Let us consider a partial case of Eq. (2) when τ(t) ≡ t−l, l ∈ R+ andK(t, s) ≡ c(t)
for t ∈ [t∗,∞). Then Eq. (2) takes the form

ẏ(t) = −c(t)
∫ t

t−l
y(s) ds. (3)

Theorem 3. For the existence of a solution of Eq. (3), positive on [t∗− l,∞), the
inequality

c(t) ≤M, t ∈ [t∗,∞)
is sufficient for M = α(2 − α)/l2 = const with a constant α being the positive
root of the equation 2 − α = 2e−α. (The approximate values are α

.= 1, 5936 and
M

.= 0, 6476/l2.)

This work has been supported by the plan of investigations MSM 2622000 13 of the
Czech Republic and by the grant 201/99/0295 of Czech Grant Agency (Prague).



An existence criterion of positive solutions . . . 141

References

1. J. Diblík, A criterion for existence of positive solutions of systems of retarded func-
tional differential equations. Nonl. Anal., TMA 38 (1999), 327–339.

2. L.H. Erbe, Q. Kong, B.G. Zhang, Oscillation Theory for Functional Differential
Equations. Marcel Dekker, New York, 1995.

3. I. Györi, G. Ladas, Oscillation Theory of Delay Differential Equations. Clarendon
Press, Oxford, 1991.




		webmaster@dml.cz
	2012-09-13T06:22:43+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




