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Abstract. In this contribution, we present several algorithms for image
processing based on some modifications of the Allen-Cahn equation. These
algorithms include noise removal, pattern recovery and shape recovery and
are motivated by similar models based on the level set formulation of mo-
tion by mean curvature. The equations are solved by semi-implicit finite dif-
ference method. Also, results of some numerical experiments are included.
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1 Introduction

In this contribution, we will present some algorithms for image processing by means
of modifications of the Allen-Cahn equation, which is closely connected with notion
of mean curvature motion.
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The family of curves Γ t : S → R2, t ∈ (0, T ), S ⊂ R, undergoes motion in
the normal direction and the velocity is a function of curvature κ. The isotropic
motion law then is

υΓ = −κ+ F. (1)

Equations of this type have recieved a lot of attention during recent years, both
from the theoretical and practical point of view, as there is a wide range of possible
applications. They can be solved by directly discretizing the parameterized curve
and these methods are then called direct.

Another approach are indirect methods, where the evolving curve is a level
set of a higher dimensional function, that is the solution of a partial differential
equation. Level set methods are based on a degenerate parabolic equation, that
can be directly derived from the equation (1). Level sets of the solution of this
equation move in the normal direction with speed a function of curvature, as
it was introduced in the work of Osher and Sethian [20]. In order to solve this
equation numerically, some kind of regularization needs to be introduced.

The Allen-Cahn equation [3] can be considered as another possible regular-
ization of level-set methods. It originates from the theory of phase transitions
[3,4,5,6,7,8], where the evolving curve represents an interface separating solid and
liquid phases. The dependence of normal velocity of this interface is given by sur-
face tension effects. With level set methods, singularities such as corners, splitting
and merging of curves seem to be handled automatically, which is a great ad-
vantage. However, from the computational point of view, the level set methods
are more computationally expensive than numerical methods based on the direct
approach due to the discretization of a 2D domain.

The range of applications of the Allen-Cahn in image processing includes among
other noise removal, image segmentation, shape recovery and morphing. The goal
of this work is to investigate properties of this equation within the context of image
processing. Several models for image processing based on the Allen-Cahn equation
will be shown followed by the description of numerical approximations of these
models. Results of numerical experiments will be demonstrated on some artificial
and real images.

This work is organised as follows. In the Section 2, we will shortly describe
the Allen-Cahn equation and its different forms. In the Section 3, a number of
possible applications of the equation in some of the tasks in image processing will
be described. The Section 4 is devoted to numerical schemes for solving the Allen-
Cahn equation based on semi-implicit finite difference methods. Some remarks on
used iterative solvers together with results of several numerical experiments will
be presented in the Section 5.

2 Allen-Cahn equation

The Allen-Cahn equation is a well-known reaction-diffusion equation, that origi-
nates from the theory of phase transitions (see [3,4,5,6,7,8] and references therein).
It gives rise to a sharp interface between two domains Ωt

0 and Ωt
1 (both depending
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on time), that moves by its mean curvature according to the law (1). The general
form of this equation with zero Neumann boundary condition is following

ξ2
∂p

∂t
= ξ2∆p+ f(p; ξ), x ∈ Ω, t > 0, (2)

∂p

∂n

∣∣∣
∂Ω

= 0, (3)

p|t=0 = p0, (4)

where ξ is a given constant and n denotes the outer normal to the domain Ω. The
term ξ plays a special role in the model. It determines the width of the interface
domain between the domains Ωt

0 and Ωt
1, which is of order ξ. For ξ → 0+, the

motion law for this interface converges to the law (1). Each form of this equation
then differs in the choice of the function f(p; ξ) and three possible choices will be
described now.

Model 1 This is the original form of the function f(p; ξ) and it has the following
form [8]

f(p; ξ) = ap(1− p)(p− 0.5) + ξF, (5)

where a and F are given constants.
However, this model has certain limitations. The behaviour of the solution is

given by three zeros of the polynom f(p; ξ). For certain values of ξ and F this
polynom looses these three zeros and thus the correct behaviour (see the figure 2).

Another limitation is that the range of the solution is not 〈0, 1〉.

Model 2 Another form of the function f(p; ξ), that was proposed in [18], is

f(p; ξ) = ap(1− p)(p− 0.5 + ξF ). (6)

The solution of the Allen-Cahn equation with this form of f(p; ξ) stays between
0 and 1 for all times. However, the constants ξ and F must be chosen so that the
term p− 0.5 + ξF has a zero between 0 and 1.

Model 3 Better properties has the Allen-Cahn equation with the following form
of the function f(p; ξ), which was proposed in [4,5]

f(p; ξ) = ap(1− p)(p− 0.5) + ξ2F · |∇p|. (7)

This form is motivated by the level set formulation of the motion law (1). The
solution of this equation should stay within 〈0, 1〉 for all t and it approximates the
motion law (1) more accurately. Comparison of this model with the corresponding
sharp interface law was performed in [7]. In the subsequent sections, the Allen-
Cahn equation solely in this form will be used.
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Fig. 1. Function f0(p) = 2p(1− p)(p− 0.5)

3 Allen-Cahn equation in image processing

In this section, we describe applications of the Allen-Cahn equation in a stage
of image processing that is usually called image pre-processing. The aim of image
pre-processing is to improve an image and enhance features of objects in it, so that
any further analysis, such as object detection and recognition, is more reliable or
even possible. A typical field of human activity, that uses tools of image processing
extensively, is medicine. Visual data from methods like echocardiography or MRI
are often disturbed by noise and some image enhacement is thus necessary. Noise
removal therefore makes very important part of image pre-processing, but not a
sole one.

Another important task encountered in image processing is segmentation. The
goal of image segmentation is to divide the rectangular domain of the image into
finitely many regions in which a certain property has constant value. This property
can be value of intensity function or a specific high-frequency pattern, often called
a texture. Boundaries of these regions are edges, along which the intensity gradient
is by definition “large”. We will address this problem in the Sections 3.1 and 3.2.

In the Section 3.3, we will describe how the Allen-Cahn equation can be applied
in image morphing. By image morphing we mean a task with two given images,
the initial image and the final image, and we seek a continous transformation
between these two images. Apparently, there are infinitely many such transforma-
tions and it is up to the user to choose the appropriate one. Our model performs
transformation, in which the level sets of the solution move by mean curvature.
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In the following we suppose, that the input image is a real function p0(x, y)

p0 : Ω → 〈0, 1〉,

representing intensity of a gray-scale image. Ω ⊂ R2 represents a spatial domain
(rectangular in practice). The multiscale image analysis (as introduced in [1]),
associates with p0(x, y) a family p(x, y, t) of transformed images depending on an
abstract parameter t, that is called a scale. As it has been proved in [1], under
basic assumptions the family can be represented as a solution of a second order
parabolic partial differential equation

∂p

∂t
= F (p,∇p,∇2p, t) (8)

with the initial condition
p(x, y, 0) = p0(x, y). (9)

In our case, the equation (8) will be represented by the Allen-Cahn equation. For
other possible forms of equation (8) representing multiscale analysis see [1,2].

3.1 Noise removal

In this Section, when referring to the Allen-Cahn equation, we consider the fol-
lowing form

ξ
∂p

∂t
= ξ∆p+

1
ξ
ap(1− p)(p− 0.5) + ξF · |∇p|,

∂p

∂n

∣∣∣
∂Ω

= 0,

p|t=0 = p0.

(10)

We already know, that the Alle-Cahn equation has some very special properties.
With increasing scale t, the Allen-Cahn equation forms regions, in which the so-
lution is close to 0 or 1, and an interface domain of a small width (determined by
the parameter ξ), where the solution changes rapidly. This interface moves in the
normal direction at a speed that is proportional to its mean curvature. We can
use these properties in image processing as follows.

Noise in an image is a disturbation, whose level sets are curves with high mean
curvature. By a level set of a function p(x, t) at level c we mean the following set

L = {x ∈ R2 | p(x) = c}.

Thus, if we were able to move these level sets by their mean curvature, the features
in an image with high curvature (such as noise) would rapidly shrink to a point,
while at the same time important features with lower mean curvature would change
only a little. From the properties of the Allen-Cahn equation follows, that this can
be succesfully accomplished by applying this equation on the noisy image as an
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initial condition. Moreover, we are able to control, which features in the image will
be kept by means of the forcing term F. If we look at the motion law (1)

υΓ = −κ+ F,

we can see, that if the term F is equal to mean curvature, the normal velocity is
zero. This means that such an object in the image will be left unchanged, while
objects with higher curvature will shrink and objects with lower curvature grow.

More precisely, let us consider a simple example with a circle. A circle has
curvature equal to 1/r, where r is its radius. Thus, if we put F = 1/r, this circle
will remain unchanged during the whole evolution of the equation. For F > 1/r,
the circle will shrink and vice versa. With F = 0, the radius of the circle with
initial radius r0 at time t is given by

r(t) =
√
r02 − 2t

The process of shrinking of a circle can be seen at Figure (3.1). The previous
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Fig. 2. Shrinking of a circle with r0 = 1 by its mean curvature.

relation implies a certain disadvantage. As the system evolves, not only the noise
is removed, but also other objects in the image, that might be important. In time,
every object in the image becomes convex due to the influence of mean curvature
and then shrinks to a point. In the end, the system gets to the steady state, which in
the case of images would be a black or white image, depending on the intial image
and value of the parameter F . This implies, that the evolution has to be stopped
after a certain time. However, no stopping criterion is known, which means, that
the stopping time has to be determined experimentally. Another disadvantage is
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implied by the properties of the Allen-Cahn equation itself. Its solution tends to
values 0 and 1 for any initial condition and any choice of parameters, thus making
the equation unsuitable for processing of gray-scale images. For computational
experiments, see Section 5.

3.2 Shape recovery

After removing the noise, the subsequent aim is often detection of objects in the
image or recovery of their boundaries. Geometric active contour models turn out to
be a very useful tool for edge detection in gray-scale images (e.g. [10,11,12,16,17]).
The idea behind these methods is quite simple. Given an initial curve, that encloses
all the objects to be recovered, we want to move this curve in the direction of
its normal vector field so that it adheres to the edges in the image. Besides edge
detection, active contour models have been used for segmentation, shape modelling
and visual tracking.

A number of approaches have been proposed for active contour models in the
past few years. Caselles et al. [10] and Malladi et al. [19] proposed the following
model based on the level set formulation

∂u

∂t
= g(x, y)|∇u|

(
∇ ∇u
|∇u| + ν

)
. (11)

The function g(x, y) depends on the image I, in which we want to find boundaries,
and is used as a “stopping term”. In [10,19], the term

g =
1

1 + λ|∇Gσ ∗ I|n

was chosen (in [10] n = 1, in [19] n = 2), where Gσ is the Gaussian function. The
level sets of u move in their normal direction with speed a function of curvature
as it was introduced in [20]. The initial curve given as a level set of the initial
condition u0 is put inside or outside the object to be recovered. The stopping
term g should ensure, that the speed of shrinking of the curve is small near a
boundary, thus stopping the curve at the boundary. However, due to the term ν,
this model does not guarantee to stop the motion at the boundary and the edge
can be crossed.

An improved model has been proposed by Kichenassamy et al. [17]. The model
they propose is

∂u

∂t
= g|∇u|

(
∇ ∇u
|∇u| + ν

)
+∇g · ∇u. (12)

Again, the shrinking (or growing) of the edge-seeking curve is an inhomogeneous
process. The curve in those parts of the image I, where there is no edge, shrinks due
to the term ν. When the curve approaches an edge in the image I, the function g is
“small”, thus suppressing the influence of curvature. The convection term ∇g ·∇u
attracts the curve to the edge and its form causes, that the curve will not go past
an edge, to which it has adhered (see Figure 3.2).
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Fig. 3. Explanation of the forcing term in the shape recovery model in one-
dimensional case.

Motivated by the just described models, let us now describe our model based
on the Allen-Cahn equation

ξ
∂p

∂t
= g
(
ξ∆p+

1
ξ
f0(p)

)
+ ξK,

∂p

∂n

∣∣∣
∂Ω

= 0,

p|t=0 = p0,

(13)

where

K =

{
F · |∇p| if ∇g · ∇p < β

∇p · ∇g if ∇g · ∇p ≥ β
(14)

g =
1

1 + λ|∇Gσ ∗ I|2
.

We modify the Allen-Cahn equation by introducing the function g and by modi-
fying the forcing term F in the same way as in the level set model so that, as the
edge-seeking curve evolves, it is attracted to the boundaries in the image, in which
we want to recover boundaries (we have denoted this image as I). We supply the
initial edge-seeking curve as a boundary of C ⊂ Ω , that contains all objects to
be recovered. The initial condition for the modified Allen-Cahn equation then is
p0 = 1 − χC . Let us explain the terms appearing in this equation in more detail.
With the choice for the forcing term given by (14), two cases may arise. The pa-
rameter β plays a role of a “switch”; it determines, which form of the forcing term
should be used:
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1. ∇g · ∇p ≥ β – the edge-seeking curve is given by the level set at 0.5 of the
solution p. Then, this case arises, when this curve gets “close” to an edge in
the image I. To explain the form of the forcing term in more detail, let us
demonstrate the idea in the one-dimensional case as shown at Figure (3.2). As
it can be seen from the last figure, on each side of the edge the forcing term
has a different sign. As the curve approaches a region with higher gradient in
image I, it is attracted by the edge. Moreover, the form of ∇g · ∇p in this
case does not allow the curve to go past this edge. If it crossed the edge, the
opposite sign of ∇g · ∇p would guarantee, that the curve would be “dragged”
back. From these facts, the role of the function g is apparent – at a boundary
with high curvature, we need to suppress its influence. In the other case, the
force keeping the curve at the boundary would be smaller than the influence
of curvature and the curve would cross the edge. Then, the boundary could
not be recovered.

2. ∇g ·∇p < β – in this case, the edge-seeking curve does not approaches an edge
in I and the forcing term has the same form as in the Allen-Cahn equation.
This has two reasons. Firstly, if the curve moved only by its mean curvature,
the evolution might be too slow. Secondly, during the evolution of the solution,
some parts of the curve may become straight. If the term K had the same form
as in the previous case, it would be equal or close to zero. Mean curvature in
such a part would be zero as well and thus there would not be any force,
that would move the curve to the desired boundary. This would result in a
situation, when the exact shape of the object could not be recovered. On the
other hand, this feature might be sometimes desirable, for instance in the case
we wanted to recover a missing part of the boundary.

3.3 Pattern recovery

Pattern recovery in our context essentially differs from shape recovery. In shape
recovery, we have one image in which we want to find boundaries of objects in it.
In pattern recovery, by means of the Allen-Cahn equation with a modified forcing
term we want to obtain a continuous transformation of one image into another.
Obviously, there are infinitely many such transformations, but this model chooses
the one, in which the level sets move by mean curvature.

The model we propose is

ξ
∂p

∂t
= ξ∆p+

1
ξ
f0(p) + ξF (p; p1) · |∇p|,

∂p

∂n

∣∣∣
∂Ω

= 0,

p|t=0 = p0,

F (p; p1) = b(p1 − p), b > 0,

(15)

where p0 denotes the initial image (initial condition), p1 is the final image and
b > 0 is a constant. The equation for pattern recovery consists in modifying the
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forcing term in the type 3 of the Allen-Cahn equation (2). The evolution is then
an inhomogeneous process - the forcing term is modified so that is depends on the
solution p and on the final image p1. With this setting, level sets of the solution
move to level sets in the final image in the apropriate direction, depending on
whether the value of the solution is greater or less than the value of the final
image in a given point. By means of the constant b, we can control speed of the
transformation.

This model can be easily extended to processing of color images, the equation
can be applied to each color channel separately.

4 Numerical schemes

In this section, numerical schemes for the models presented in the Section 3 will
be discussed. These schemes have been used to compute the numerical results
presented in the Section 5.

To approximate the parabolic equtions from the Section 3, the finite difference
method with the semi-implicit time discretization has been used. The nonlinearity
introduced into the models by the polynom f0(p) was treated from the previous
discrete time step, while the linear terms are handled implicitly. In this way, we
obtain a linear algebraic system, that can be efficiently solved by some iterative
method. By using an explicit scheme, we would have to face the stability problems
and by using a fully implicit scheme we would have to solve a system of nonlinear
equations.

Notations Let us first introduce notations used throughout this section. Let h and
τ be discrete space and time (in our context this variable is called a scale) steps.
By Ω we denote the rectangular domain of the image, by nx and ny we denote
the number of pixels in the direction of x and y axis respectively and by nT the
number of discrete scale steps. Let us denote

pj = p(·, jτ), δpj =
pj − pj−1

τ
, pk,s = p(kh, sh),

ωh = {[ih, jh]|i = 1, . . . , nx − 2; j = 1, . . . , ny − 2},
ω̄h = {[ih, jh]|i = 0, . . . , nx − 1; j = 0, . . . , ny − 1},

px̄,ks =
pks − pk−1,s

h
, px,ks =

pk+1,s − pks
h

,

pȳ,ks =
pks − pk,s−1

h
, py,ks =

pk,s+1 − pks
h

,

px̄x,ks =
1
h2

(pk+1,s − 2pks + pk−1,s),

and

∇hp = [1/2(px̄ + px), 1/2(pȳ + py)],
∆hp = px̄x + pȳy,

as mappings from ωh to R2 or R, respectively.
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4.1 Allen-Cahn equation

The semi-implicit scheme for the Allen-Cahn equation, used for the numerical
experiments, is

ξδpjh = ξ∆hp
j
h +

1
ξ
f0(p

j−1
h ) + ξF · |∇hp

j−1
h | on ωh, (16)

with initial condition
p0h = p0.

The solution is a map ph : {1, . . . , nT } × ω̄h → R.
The zero Neumann boundary condition is handled by reflecting the image at

the boundaries, for instance at the left boundary of the image holds

pj1,s − p
j
−1,s

2h
= 0 ⇒ pj1,s = pj−1,s s = 0, . . . , ny − 1.

If we number the pixels by rows from left to right, we can write the scheme using
matrix notation

Apj = gj−1, A ∈ Rn,n j = 1, . . . , nT , (17)

where n = nx · ny. In this case, pj denotes the vector of unknows and gj−1 is
the right-hand side of the linear algebraic system, made of terms from the previ-
ous scale step. The matrix A is a sparse positive definite matrix with a special
penta-diagonal structure. The boundary condition causes, that the matrix is not
symmetric. However, if we multiply the rows of (17) corresponding to the pixels
at boundaries by 1/2 and the rows corresponding to the pixels at corners by 1/4,
the matrix A becomes symmetric, which allows us to use efficient iterative solvers
like conjugate gradient method.

4.2 Shape recovery

The semi-implicit scheme for the shape recovery equation is

ξδpjh = ξ∆hp
j
h +

1
ξ
f0(p

j−1
h ) + ξK on ωh,

K =

{
F · |∇hp

j
h| if ∇hp

j
h · ∇hgh < β

∇hp
j
h · ∇hgh if ∇hp

j
h · ∇hgh ≥ β

gh =
1

1 + λ(Gσ ∗ I)2h
,

with initial condition
p0h = p0.

The image, in which we want to recover boundaries, is denoted by I.



94 V. Chalupecký and M. Beneš

4.3 Pattern recovery

The semi-implicit FDM scheme of this model is

ξδpjh = ξ∆hp
j
h +

1
ξ
f0(p

j−1
h ) + ξF (pj−1

h )|∇hp
j−1
h | on ωh,

F (p) = b(p1 − p), b > 0,

with initial condition
p0h = p0.

5 Computational results

As it has been mentioned in the previous section, the semi-implicit FDM discretiza-
tion leads to solving a large sparse algebraic system. In most cases, the matrix of
this system is symmetric, which allows one to use efficient iterative solvers like
conjugate gradient method, possibly with some kind of preconditioning. In the
case of the shape recovery model, the matrix is not symmetric, which influences
the choice of the solver. For instance, possible choices then could be bi-conjugate
gradient method or classical relaxation methods like Gauss-Seidel or SOR. In fact,
in most cases, the use of the Gauss-Seidel method is sufficient due to the special
properties of the Allen-Cahn equation. With lowering the parameter ξ (and thus
increasing the accuracy of the model), one needs to lower the discrete scale step as
well. The solution between two scale levels does not differ much and the solution
from the previous scale level can be used as a good initial guess for the solver.
Number of required iterations then is not large, thus the convergence rate even of
the Gauss-Seidel method is very good. Compared to the CG method, the advan-
tage of the Gauss-Seidel method is in lower memory requirements and in simplicity
of the algorithm.

# of iter 1st step 5th step 20th step 50th step Total time
Gauss-Seidel 23 23 23 22 153.22
CG No precond 28 28 26 24 250.45
CG Jacobi 21 20 17 17 252.85
CG IC(0) 17 17 16 15 373.38

Table 1. Comparison of iterative solvers for the scheme (16); gray-scale image
size: 512x512; implicit scheme

Despite the fact, that for the presented numerical computations the Gauss-
Seidel method has been used, it is interesting to compare this method with CG
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without preconditioning and with Jacobi preconditioner and the IC(0) precondi-
tioner. See Table (1) for comparison of these two types of preconditioners. The
results in this table were computed by solving the Allen-Cahn equation of the
type 3 on AMD 650MHz with 128MB memory. In each column there is a number
of solver iterations at a given scale. The total time, shown in the last column, is
amount of time spent in the solver during the evolution.

5.1 Computational experiments

Example 1 Allen-Cahn equation with gradient term. Gray-scale image (size 512x
512 pixels), contamined with salt and pepper noise. Parameters: h = 0.05, τ =
0.0005, ξ = 0.05, a = 2, F = 0. Image in the upper left corner is the original
image, followed by images after 10, 20 and 30 iterations. Two bottom images show
level set at 0.5 in the original and final image.

Example 2 Allen-Cahn equation with gradient term. Binary image (size 180x180
pixels), contamined with salt and pepper noise. Parameters: h = 0.05, τ = 0.0005,
ξ = 0.05, a = 2, F = 10. Image in the upper left corner is the original image
contamined with additive noise, followed by images after 4, 8 and 12 iterations.
Two bottom images show level set at 0.5 in the original and final image. It is
apparent, that the Allen-Cahn equation gives excellent results on binary images,
even if their structure is quite complicated. The noise vanishes very quickly.

Example 3 Pattern recovery model. Initial condition: binary image (size 180x180
pixels), final condition: binary image (size 180x180 pixels). Parameters: h = 0.05,
τ = 0.0005, ξ = 0.05, a = 2, b = 100. The sequence consists of images after 10, 20,
30, 40 and 50 iterations.

Example 4 Shape recovery of a binary image (size 180x180 pixels) contamined by
salt and pepper noise. Parameters: h = 0.05, τ = 0.0005, ξ = 0.07, a = 2, b = 100,
λ = 1000, β = 10−10, F = 15. In the upper left corner, the image I is shown and
in the upper right corner, level set at 0.5 of the final image is shown. Then, initial
condition together with images after 300, 600, 800 iterations is depicted. We can
see, that a part of the letter Q with high curvature has not been recovered exactly.

Example 5 Shape recovery of multiple objects in a binary image (size 256x256
pixels) contamined by salt and pepper noise. Parameters: h = 0.05, τ = 0.0005,
ξ = 0.07, a = 2, b = 100, λ = 5000, β = 10−9, F = 15. In the upper left corner, the
image I is shown and in the upper right corner, level set at 0.5 of the final image is
shown. Then, initial condition together with images after 400, 800, 1200 iterations
is depicted. We can conclude, that the presented model gives satisfactory results
for binary images even in the presence of noise.
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Fig. 4. Example 1
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Fig. 5. Example 2
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Fig. 6. Example 3
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Fig. 7. Example 4
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Fig. 8. Example 5
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