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Abstract. In this paper we study the existence of pullback global attrac-
tors for multivalued processes generated by differential inclusions. First,
we define multivalued dynamical processes, prove abstract results on the
existence of global attractors and study their topological properties (com-
pactness, conectedness). Further, we apply the abstract results to nonau-
tonomous differential inclusions of the reaction-diffusion type in which the
forcing term can grow polynomially in time, and to stochastic differential
inclusions as well.
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1 Introduction

In this paper we study the existence of pullback global attractors for multivalued
processes generated by differential inclusions. The theory of pullback attractors has
been developed for stochastic and nonautonomous systems in which the trajecto-
ries can be unbounded when times rises to infinite. In such systems the classical
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theory of global attractors is not applicable. Hence, a different approach has been
considered [4,5,6,9].

A new difficulty appears if the solution corresponding to each initial state can
be non-unique. The classical results on attractors in the autonomous and nonau-
tonomous cases are generalized to the multivalued case in [7] and [8], respectively,
with applications to evolution inclusions.

In [1,2,3] the study of multivalued dynamical systems is extended to the stochas-
tic case, generalizing in this way the results of [4,5].

In this paper we are mainly concerned with nonautonomous multivalued dy-
namical systems in which the trajectories can be unbounded in time and also with
nonautonomous stochastic multivalued dynamical systems.

In the second section we define multivalued dynamical processes, prove abstract
results on the existence global attractors and study their topological properties
(compactness, conectedness). In the third section we apply the abstract results
to nonautonomous differential inclusions of the reaction-diffusion type in which
the forcing term can grow polynomially in time. In the fourth section we give
applications to stochastic differential inclsuions with additive and multiplicative
noises.

2 Attractors for multivalued processes

In this section we shall define multivalued dynamical processes in metric spaces.
Maps of this kind appear in differential equations for which, although we are able to
prove the existence of at least one global solution for each inital condition in some
phase space, we do not know if it is unique or not. Hence, multivalued processes
generalize the concept of processes, for which the uniqueness property holds.

Let X be a complete metric space with the metric denoted by ρ and let P (X)
(B (X) , Cv(X)) be the set of all non-empty (non-empty bounded, non-empty
bounded closed and convex) subsets ofX . Let us denote Rd =

{
(t, s) ∈ R2 : t ≥ s

}
,

dist (A,B) = sup
x∈A

inf
y∈B

ρ (x, y), distH(A,B) = max{dist(A,B), dist(B,A)}, for any

A,B ⊂ X.

Definition 1. The map U : Rd ×X → P (X) is called a multivalued dynamical
process (MDP) on X if:

1. U (t, t, ·) = I is the identity map;
2. U (t, s, x) ⊂ U (t, τ, U (τ, s, x)), for all x ∈ X, s ≤ τ ≤ t.

The MDP U is called strict if:

U (t, s, x) = U (t, τ, U (τ, s, x)) , for all x ∈ X, s ≤ τ ≤ t.

Consider a parameter set Σ = Σ1 ×Σ2. If {Uσ : σ ∈ Σ} is an arbitrary family
of MDP, then for any σ2 ∈ Σ2 the map UΣ1,σ2 : Rd ×X → P (X) defined by

UΣ1,σ2 (t, s, x) =
⋃

σ1∈Σ1

Uσ1,σ2 (t, s, x) .
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is a MDP.
Suppose that we are given a one-parameter group T (h) : Σ → Σ, where

Σ = Σ1 ×Σ2, h ∈ R and T (h) = (T1 (h) , T2 (h)) , Ti (h) : Σi → Σi, i = 1, 2. This
is called the shift operator.

In the sequel we shall assume:

(T 1) For any (t, s) ∈ Rd, x ∈ X, σ ∈ Σ, h ∈ R the following inclusion holds:

Uσ1,σ2 (t, s, x) ⊂ UT1(h)σ1,T2(h)σ2 (t− h, s− h, x) .

Lemma 2. Condition (T 1) implies

Uσ1,σ2 (t, s, x) = UT1(h)σ1,T2(h)σ2 (t− h, s− h, x) .

Lemma 3. T (h)Σ = Σ, for all h ∈ R.

Definition 4. Let (T 1) hold. Then the family of sets {ΘΣ1 (σ2)}σ2∈⊀2
is called a

Σ1-uniform global attractor of the MDP {Uσ} if:

1. ΘΣ1 (σ2) is Σ1-uniformly attracting at time 0 for any σ2 ∈ Σ2, that is,

lim
s→−∞

dist (UΣ1,σ2 (0, s, B) , ΘΣ1 (σ2)) = 0, for any B ∈ B (X) . (1)

2. It is semi-invariant, that is,

ΘΣ1 (T2 (t) σ2) ⊂ UΣ1,σ2 (t, s, ΘΣ1 (T2 (s)σ2)) , for any (t, s) ∈ Rd, σ2 ∈ Σ2.

3. It is minimal, that is, for any σ2 ∈ Σ2 and any closed Σ1-uniformly attracting
set Y (σ2) at time 0, we have

ΘΣ1 (σ2) ⊂ Y (σ2).

Theorem 5. Let X be a complete metric space in which every compact set is
nowhere dense, (T 1) hold and let for any B ∈ B (X), σ2 ∈ Σ2 there exist a
compact set D (σ2, B) ⊂ X such that

lim
s→−∞

dist (UΣ1,σ2 (0, s, B) , D (σ2, B)) = 0. (2)

Then the following statements hold:

1. If for all τ ≤ 0 and σ2 ∈ Σ2 the graph of the map x -→ UΣ1,σ2 (0, τ, x) ∈
P (X) is closed, then there exists the Σ1-uniform global attractor {ΘΣ1 (σ2)}.
Moreover,

ΘΣ1 (σ2) =
⋃

B∈B(X)

ωΣ1 (0, σ2, B) �= X,

where ωΣ1 (t, σ2, B) =
⋂

s≤t
⋃

τ≤s UΣ1,σ2 (t, τ, B), and further for each σ2 ∈ Σ2,
ΘΣ1 (σ2) is a Lindelöf, normal space. It is locally compact in some topology
τ⊕, which is stronger than the topology induced by X in ΘΣ1 (σ2).
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2. If, in addition, Σ1 is a compact metric space, the map

Σ1 ×X . (σ1, x) -−→ Uσ1,σ2 (0, τ, x) ∈ P (X)

is upper semicontinuous for any τ ≤ 0, σ2 ∈ Σ2, Uσ has connected values for
any σ ∈ Σ, (0, τ) ∈ Rd, x ∈ X, Σ1 is a connected space and

ΘΣ1 (T2 (τ) σ2) ⊂ B1 (σ2) , for all τ ≤ 0,

where B1 (σ2) is a bounded connected set for any σ2 ∈ Σ2, then the set ΘΣ1 (σ2)
is connected for any σ2 ∈ Σ2.

Theorem 6. Let us suppose that for all (0, s) ∈ Rd and σ2 ∈ Σ2 the graph of the
map x -→ UΣ1,σ2 (0, s, x) ∈ P (X) is closed. If, moreover, for any σ2 ∈ Σ2 there
exists a compact set D (σ2) , which is Σ1-uniformly attracting at time 0, then the
set

ΘΣ1 (σ2) =
⋃

B∈B(X)

ωΣ1 (0, σ2, B)

is the Σ1-uniform global attractor of Uσ. Moreover, the sets ΘΣ1 (σ2) are compact
and, if the conditions of the second statement in Theorem 5 hold, then they are
connected.

Proposition 7. Let the MDP Uσ be strict, Σ1 be a compact metric space and let
the map

Σ1 ×X . (σ1, x) -−→ Uσ1,σ2 (0, τ, x) ∈ P (X)

be lower semicontinuous. Then the global attractors obtained in Theorems 5 and 6
are invariant, that is, ΘΣ1 (T2 (t) σ2) = UΣ1,σ2 (t, τ, ΘΣ1 (T2 (τ) σ2)), for all τ ≤ t,
σ2 ∈ Σ2.

3 Applications to nonautonomous evolution inclusions

Let Ω ⊂ Rn be a bounded open subset with smooth boundary ∂Ω. Consider the
parabolic inclusion

∂u
∂t −

∑n
i=1

∂
∂xi

(∣∣∣ ∂u∂xi

∣∣∣p−2
∂u
∂xi

)
∈ f1 (t, u) + f2 (t, u) + g1 (t) + g2 (t) ,

in Ω × (τ, T ) ,
u |∂Ω= 0,
u |t=τ= uτ ,

(3)

where τ ∈ R, p ≥ 2, fi : R × R → Cv (R), i = 1, 2, g1 ∈ L∞ (R, L2 (Ω)) , g2 ∈
Lloc2 (R, L2 (Ω)) and the following conditions hold:

(F1) There exists C ≥ 0 such that

distH (f1 (t, u) , f1 (t, v)) ≤ C |u− v| , for all t ∈ R, u, v ∈ R.
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(F2) For any t, s ∈ R and u ∈ R, it holds

distH (f1 (t, u) , f1 (s, u)) ≤ l (|u|)α (|t− s|) ,

where α is a continuous function such that α (t) → 0, as t → 0+, and l is
a continuous nondecreasing function. Moreover, there exist K1,K2 ≥ 0 such
that

|l (u)| ≤ K1 +K2 |u| , for all u ∈ R.

(F3) There exist D ∈ R+, v0 ∈ R for which

|f1 (t, v0)|+ ≤ D, for all t ∈ R,

where |f1 (t, v0)|+ = sup
ζ∈f1(t,v0)

|ζ|.

(F4) There exist α1 (t) , α2 (t) ≥ 0, α1 (·) , α2 (·) ∈ Lloc2 (−∞,∞) , such that

sup
y∈f2(t,u)

|y| ≤ α1 (t) + α2 (t) |u|, for all u, t ∈ R.

(F5) For each t ∈ R, the map f2 (t, ·) is upper semicontinuous.

(F6) For each s ∈ R, the map f2 (·, s) is measurable.

(F7) If p = 2, there exist ε > 0 and M ≥ 0 such that

yu ≤ (λ1 − ε)u2 +M, for all u ∈ R, t ∈ R, y ∈ f1 (t, u) + f2 (t, u) ,

where λ1 is the first eigenvalue of −∆ in H1
0 (Ω).

(F8) There exist R1, R2, R3 > 0 such that

‖g2 (t)‖L2(Ω) ≤ R1 +R2 |t|R3 , for a.a. t ∈ R.

(F9) If p > 2, there exist R4, R5, R6 > 0 such that

|αi (t)| ≤ R4 +R5 |t|R6 , for a.a. t ∈ R, i = 1, 2.

First let us construct the sets Σ1, Σ2.
Denote by W the space Cv (R) endowed with the Hausdorff metric ρ (x, y) =

dist H (x, y). The space W is complete. For any ψ ∈W let |ψ|+ = max
y∈ψ

|y| . Define

also the space

M =
{
ψ ∈ C (R,W ) : |ψ (v)|+ ≤ D1 +D2 |v|

}
,

where the constants D1, D2 are such that |y| ≤ D1 +D2 |u| , for all u ∈ R, t ∈ R,
y ∈ f1 (t, u)

The hull of (f1, g1) will be denoted by Σ1 = H (f1) × H (g1), where H (f1) =
clC(R,M) {f1 (·+ h) : h ∈ R}, H (g1) = clLloc

2,w(R,L2(Ω)) {g1 (·+ h) : h ∈ R} . The set

Σ1 is compact in the space C (R,M) × Lloc2,w (R, L2 (Ω)), where Lloc2,w (R, L2 (Ω))
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is the space Lloc2 (R, L2 (Ω)) endowed with the weak topology. Then the set Σ1 is
a compact metric space and T1 (h)Σ1 = Σ1, for all h ∈ R, where T1 (h)σ1 (t) =
σ1 (t+ h) .

For the set Σ2 we put

Σ2 =
⋃
h∈R

(f2 (·+ h) , g2 (·+ h)) .

It is clear that T2 (h)Σ2 = Σ2, for all h ∈ R, where T2 (h)σ2 (t) = σ2 (t+ h).
Now let X = L2 (Ω) with the norm ‖·‖X and the scalar product (·, ·). Consider

the abstract evolution inclusion{
du
dt (t) ∈ A (u (t)) + Fσ (t, u (t)) , t ∈ [τ,∞) ,
u (τ) = uτ ,

(4)

where σ = (σ1, σ2) ∈ Σ and A : D (A) ⊂ X → 2X , Fσ : R × X → 2X , are
multivalued maps defined as follows:

A (u) =
n∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi
∣∣∣∣p−2

∂u

∂xi

)
, D (A) =

{
u ∈W 1,p

0 (Ω) : A (u) ∈ L2 (Ω)
}
,

Fσ1 (t, u) = {y ∈ X : y (x) ∈ fσ1 (t, u (x)) + gσ1 (t) , a.e. on Ω} ,
Fσ2 (t, u) = {y ∈ X : y (x) ∈ fσ2 (t, u (x)) + gσ2 (t) , a.e. on Ω}

Fσ (t, u) = Fσ1 (t, u) + Fσ2 (t, u) .

The operators A and Fσ satisfy the following properties:

(A1) The operator A is m-dissipative, i.e.

(ξ1 − ξ2, y1 − y2) ≤ 0 , for any y1, y2 ∈ D(A), ξi ∈ A(yi), i = 1, 2,

and Im(A− λI) = X, for all λ > 0.
(A2) D (A) = L2 (Ω) and A generates a compact semigroup S.

(S1) Fσ : R×X → Cv (X), for all σ ∈ Σ.
(S2) For any fixed t ∈ R and σ ∈ Σ the map u -−→ Fσ (t, u) is w-upper semicon-

tinuous , that is, for any ε > 0 there exists δ > 0 such that if ‖u− v‖X < δ,
then

dist (Fσ (t, u) , Fσ (t, v)) < ε.

(S3) For any σ ∈ Σ there exist β1,β2 ≥ 0, β1, β2 ∈ Lloc2 (−∞,∞) (depending on
σ2 but not on σ1), such that

‖Fσ(t, u)‖+ ≤ β1 (t) + β2 (t) ‖u‖X , for all u ∈ Xand a.a. t ∈ R.

(S4) For any (T, τ) ∈ Rd, x ∈ X, σ ∈ Σ, the map t -→ Fσ (t, x) has a measurable
selection.



Attractors of nonautonomous inclusions 63

Definition 8. The continuous function uσ (·) ∈ C ([τ, T ] , X) is called an integral
solution of (4) if uσ (τ) = uτ and there exists l (·) ∈ L1 ([τ, T ] , X) such that
l (t) ∈ Fσ (t, uσ (t)), a.e. on (τ, T ), and for any ξ ∈ D(A), v ∈ A(ξ) one has

‖uσ(t)− ξ‖2X ≤ ‖uσ(s)− ξ‖
2
X + 2

∫ t

s

(l(r) + v, uσ(r) − ξ) dr, t ≥ s. (5)

It follows from (A1)− (A2) , (S1)− (S4) that for any uτ ∈ L2 (Ω) there exists
at least one integral solution uσ to (4) for any T > τ [10, Theorem 2.1]. For a fixed
σ ∈ Σ let Dσ,τ (x) be the set of all integral solutions corresponding to the initial
condition u (τ) = x. We shall define the map Uσ : Rd ×X → P (X) by

Uσ (t, τ, x) = {z : there exists u (·) ∈ Dσ,τ (x) such that u (t) = z} .

Proposition 9. For each σ ∈ Σ, h ∈ R, τ ≤ s ≤ t, x ∈ X we have

Uσ (t, s, Uσ (s, τ, x)) = Uσ (t, τ, x) ,

UT (h)σ (t, τ, x) = Uσ (t+ h, τ + h, x) .

Hence, Uσ is a multivalued process for each σ ∈ Σ and condition (T 1) holds.

Theorem 10. If (F1)−(F9) hold and g1 ∈ L∞ (R, L2 (Ω)), g2 ∈ Lloc2 (R, L2 (Ω)),
then the family of MDP Uσ has the Σ1− uniform global compact attractor ΘΣ1 (σ2).

Let us consider now the connectivity of the global attractor.

Theorem 11. In the conditions of Theorem 10, let f2 ≡ 0 and let there exist a
non-decreasing map C (t) such that ‖g2 (t)‖X ≤ C (t), for a.a. t ∈ R. Then the set
ΘΣ1 (σ2) is connected in X for each σ2 ∈ Σ2.

4 Stochastic non-autonomous evolution inclusions

4.1 Additive white noise case

Consider the following non-autonomous differential inclusion perturbed by an ad-
ditive white noise


∂u
∂t −∆u ∈ f (t, u) + g1 (t) + g2 (t) +

∑m
i=1 φi

dwi(t)
dt , on D × (τ, T ) ,

u |∂D= 0,
u |t=τ= uτ ,

(6)

where τ ∈ R, D ⊂ Rn is an open bounded set with smooth boundary ∂D, wi (t)
are independent two-sided, i.e. t ∈ R, real Wiener processes with wi (0) = 0,
φi ∈ D(A) (where A (u) = ∆u, D (A) = H1

0 (Ω) ∩ H2 (Ω)), i = 1, ...,m, f :
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R × R → Cv (R), i = 1, 2, g1 ∈ L∞ (R, L2 (D)) , g2 ∈ Lloc2 (R, L2 (D)) . We write
ζ (t) =

∑m
i=1 φiwi (t). Consider the Wiener probability space (Ω,F ,P) defined by

Ω = {ω = (w1 (·) , ..., wm (·)) ∈ C (R,Rm) | ω (0) = 0} ,

equipped with the Borel σ−algebra F and the Wiener measure P. Each ω ∈ Ω
generates a map ζ (·) =

∑m
i=1 φiwi (·) ∈ C (R, L2 (D)) such that ζ (0) = 0.

Suppose that f satisfies (F1)–(F3), (F7), whereas g2 satisfies (F8).
Firstly, let us construct the sets Σ1, Σ2. The set Σ1 will be defined in the same

way as in the previous section. For the set Σ2 we write

Σ2 = Σ̃2 ×Ω, Σ̃2 = ∪
h∈R

g2 (·+ h) .

We define the map θs : Ω → Ω as follows

θsω = (w1 (s+ ·)− w1 (s) , ..., wm (s+ ·)− wm (s)) ∈ Ω.

Then the function ζ̃ corresponding to θsω is defined by ζ̃ (τ) = ζ (s+ τ)− ζ (s) =∑m
i=1 φi (wi (s+ τ)− wi (s)) .
The operator T1 is defined as before. We define the shift operator T2 : Σ2 →

Σ2 as

T2(h)σ2 = T2(h)(σ̃2, ω) = (σ̃2(·+ h), θhω), for all σ̃2 ∈ Σ̃2, ω ∈ Ω.

Thus, T2 (h)Σ2 = Σ2, for all h ∈ R.
To study (6), we make the change of variable v (t) = u (t)−ζ (t). Then inclusion

(6) turns, for each ω ∈ Ω fixed, into{
dv
dt ∈ ∆v (t) + f (t, v (t) + ζ (t)) + g1 (t) + g2 (t) +

∑m
i=1∆φiwi (t) ,

v |∂D= 0, v (τ) = vτ = uτ − ζ (τ) .
(7)

Now let X = L2 (Ω). Consider the abstract evolution inclusion{
dv(t)
dt ∈ A (v (t)) + Fσ (t, v (t)) , t ∈ [τ,∞) ,

v (τ) = vτ = uτ − ζ (τ) ,
(8)

where σ = (σ1, σ2) ∈ Σ, A is defined as before and Fσ : R×X → 2X is defined as
follows:

Fσ (t, ω, u) = gσ2(t) + Fσ1 (t, u+ ζ (t)) +Aζ (t) ,

where Fσ1 is as in the previous section.
As before, the operators A, Fσ satisfy (A1)–(A2), (S1)–(S4), so that for any

vτ ∈ L2 (Ω) there exists at least one integral solution to (8) for any T > τ [10,
Theorem 2.1]. For a fixed σ ∈ Σ let Dσ,τ (x) be the set of all integral solutions
corresponding to the initial condition v (τ) = x. We define the map Uσ : Rd×X →
P (X) by

Uσ (t, τ, x) = {z + ζ(t) : there exists v (·) ∈ Dσ,τ (x− ζ (τ)) such that v (t) = z} .

Theorem 12. In the preceedings conditions, the family of MDP Uσ has the Σ1−
uniform global compact attractor ΘΣ1 (σ2).
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4.2 Multiplicative white noise case

Finally, consider the following non-autonomous differential inclusion perturbed by
a linear multiplicative white noise in the Stratonovich sense

∂u
∂t −∆u ∈ f (t, u) + g1 (t) + g2 (t) + u ◦ dw(t)

dt , on D × (τ, T ) ,
u |∂D= 0,
u |t=τ= uτ ,

(9)

where τ ∈ R, D ⊂ Rn is and open bounded set with smooth boundar ∂D, f :
R × R → Cv (R), i = 1, 2, g1 ∈ L∞ (R, L2 (D)) , g2 ∈ Lloc2 (R, L2 (D)) . Consider
the Wiener probability space (Ω,F ,P) defined by

Ω = {ω = w (·) ∈ C (R,R) | ω (0) = 0} ,

equipped with the Borel σ−algebra F and the Wiener measure P.
Suppose again that f satisfies (F1)–(F3), (F7), whereas g2 satisfies (F8).
We define Σ = Σ1 ×Σ2 = Σ1 × Σ̃2 ×Ω and T1, T2 exactly as in the previous

section, with θs : Ω → Ω

θsω = (w (s+ ·)− w (s)) ∈ Ω.

To study (9), we make the change of variable v (t) = γ(t)u (t) , with γ(t) =
γ (ω, t) = e−w(t) (we shall omit ω). Then inclusion (9) turns into{

dv
dt ∈ ∆v (t) + γ(t)f

(
t, γ−1(t)v(t)

)
+ γ(t)(g1 (t) + g2 (t)),

v |∂D= 0, v (τ) = vτ = γ (τ) uτ .
(10)

Now let X = L2 (Ω). Consider{
dv(t)
dt ∈ A (v (t)) + Fσ (t, v (t)) , t ∈ [τ,∞) ,

v (τ) = vτ ,
(11)

where σ = (σ1, σ2) ∈ Σ, A is defined as before, and Fσ : R×X → 2X is defined as

Fσ (t, ω, u) = γ (t) gσ2(t) + γ (t)Fσ1

(
t, γ−1 (t)u

)
,

where Fσ1 is as in the previous section.
As before, the operators A, Fσ satisfy (A1)–(A2), (S1)–(S4). We define the

map Uσ : Rd ×X → P (X) by

Uσ (t, τ, x) =
{
γ−1 (t) z : there exists v (·) ∈ Dσ,τ (γ (τ) x) such that v (t) = z

}
.

Theorem 13. In the preceedings conditions, the family of MDP Uσ has the Σ1−
uniform global compact attractor ΘΣ1 (σ2).
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