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1 Introduction

This is a survey of some recent results on the existence and qualitative properties
of the global-in-time weak solutions to the Navier-Stokes system:

∂tL+ div(LMu) = 0, (1.1)

∂t(LMu) + div(LMu⊗ Mu) +∇p = µ∆Mu+ (λ+ µ)∇ div Mu+ LMf. (1.2)
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The system describes the time evolution of the density L = L(t, x) and the
velocity Mu = Mu(t, x) of a viscous compressible fluid, which occupies a spatial do-
main Ω ⊂ RN . Though the problem makes sense for any positive integer N , the
physically interesting cases are N = 1, 2, 3.

The viscosity coefficients are assumed to be constant satisfying

µ > 0, λ+ µ ≥ 0.

The symbol f stands for a given external volumic force, for instance the gravity,
which is allowed to depend on both t and x. For the sake of simplicity, we shall
assume that f is a bounded mesurable function of t and x though much more
general hypotheses could be treated by the same method.

We concentrate on the so-called barotropic case where p is a given function of
the density L, and, consequently, (1.1), (1.2) represent, at least formally, a closed
system of equations. The typical situation we have in mind is the isentropic regime
where

p = aLγ , a > 0, γ > 1.

As we shall see, the adiabatic constant γ plays the role of a critical exponent for
the problem in question.

For the sake of definiteness, the system (1.1), (1.2) is complemented by the
no-slip boundary conditions for the velocity Mu as well as the initial conditions for
both the density L and the momentum LMu:

Mu|∂Ω = 0, (1.3)

L(0) = L0, (LMu)(0) = Mq. (1.4)

Clearly, the function Mq must satisfy the compatibility conditions

Mq = 0 a.a. on the set {L0 = 0}.

Multiplying (formally) the equations (1.2) by Mu, integrating by parts, and mak-
ing use of (1.1), we arrive at the energy inequality:

d
d
tE[L, (LMu)](t) +

∫
Ω

µ|∇Mu(t)|2 + (λ+ µ)|div Mu(t)|2 dx ≤
∫
Ω

LMf · Mu dx (1.5)

where the total energy E is given by the formula

E = E[L, (LMu)] =
∫
Ω

1
2
L|Mu|2 + P (L) dx, P (L) = L

∫ 7

1

p(z)
z2

dz.
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As a matter of fact, the function P satisfies

P ′(z)z − P (z) = p(z)

and, consequently, it is uniquely determined up to an affine function of L. In the
isentropic case, one takes typically

P (L) =
a

γ − 1
Lγ ,

in particular, the behaviour of the pressure p and the “potential” P is the same
for large values of the density.

To give a weak formulation of the problem (1.1)–(1.3), we consider the space
D1,2

0 (Ω) - the completion of the space D(Ω) of all compactly supported smooth
functions with respect to the (semi-)norm

‖v‖2
D1,2(Ω) =

∫
Ω

|∇v|2 dx. (1.6)

Note that the quantity defined in (1.6) is a norm on the space D1,2
0 (Ω) provided

N = 3 or when Ω is a bounded domain with sufficiently smooth boundary. In the
latter case, D1,2

0 (Ω) coincides with the Sobolev space W 1,2
0 (Ω). Here “sufficiently

smooth boundary” means that the Poincaré inequality is satisfied.
Following [6], we shall say that L, Mu is a finite energy weak solution to the

problem (1.1)–(1.3) on the set (0, T )×Ω if the following conditions hold:

– the density L is a non-negative function,

L ∈ L∞(0, T ;L1(Ω)), P (L) ∈ L∞(0, T ;L1(Ω)), Mu ∈ L2(0, T ;D1,2
0 (Ω));

– the total energy E is locally integrable, and the energy inequality (1.5)
holds in D′(0, T ) (in the sense of distributions);

– the continuity equation (1.1) is satisfied in D′((0, T )× RN ) provided L, Mu
are extended to be zero outside Ω; moreover, the functions L, Mu represent
a renormalized solution of the equation (1.1), i.e., one has

∂tb(L) + div(b(L)Mu) +
(
b′(L)L− b(L)

)
div Mu = 0 in D′((0, T )×RN ) (1.7)

for any function b ∈ C1(R) such that

b′(z) ≡ 0 for all z large enough, say, z ≥M ;

– the pressure p is locally integrable and the equations (1.2) are satisfied in
D′((0, T )×Ω).
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As we will see, under some “reasonable hypotheses” concerning the domain
Ω and the pressure-density constitutive relation, the finite energy weak solutions
belong to the class

L ∈ C([0, T ];L1(Ω)), (LMu) ∈ C([0, T ];L1
weak(Ω))

so the initial conditions (1.4) make sense. Following this philosophy, one can rede-
fine the energy (on a set of zero Lebesgue measure in (0, T )) as

E = E[L, (LMu)] =
∫
Ω∩{7>0}

1
2
|LMu|2
L

dx+
∫
Ω

P (L) dx

to obtain a quantity defined for any t ∈ [0, T ] which is lower semi-continuous in t
(see [4]).

It is worthwhile to note that there seems to be a large qualitative gap between
the existence theory available for N = 1, and N = 2, 3. Here, we concentrate on
the more difficult case N = 2, 3 leaving the reader to consult the monograph of
ANTONTSEV, KAZHIKHOV, and MONAKHOV [1] for the former case.

2 Basic existence result

We start with the isentropic case

p(L) = aLγ , a > 0, L > 1. (2.1)

The main result we want to present here reads as follows:

Theorem 2.1. Let Ω ⊂ RN , N = 2, 3 be a bounded spatial domain with
boundary of the class C2+ν , ν > 0. Let the pressure p be given by the constitu-
tive relation (2.1) with

γ >
N

2
.

Let the initial data L0, Mq satisfy the compatibility conditions

L0 ≥ 0, L0 ∈ Lγ(Ω),
|Mq|2
L0

∈ L1(Ω). (2.2)

Finally, let T > 0 be given and let Mf be a bounded measurable function on the
set (0, T )×Ω.
Then there exists a finite energy weak solution L, Mu of the problem (1.1)–(1.3)
on (0, T )×Ω satisfying the initial conditions (1.4).
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LIONS [9] proved Theorem 2.1 for the critical values γ ≥ 3/2 for N = 2, and
γ ≥ 9/5 if N = 3. The present result was obtained in [5], [7]. As already indicated
in the introduction, the value of the adiabatic constant γ plays a role of the critical
exponent here. As a matter of fact, the critical values treated in [9] are related to
the pressure estimates of the form

p(L)Lθ bounded in L1((0, T )×Ω) for θ =
2
N
γ − 1 (2.3)

(cf. LIONS [9], [10], and [8]). For both γ ≥ 3/2 if N = 2 and γ ≥ 9/5 for N = 3,
the relation (2.3) yields

L bounded in L2((0, T )×Ω).

The square integrability of the density can be used to show the following re-
sult. Assume that L ∈ L2((0, T )× Ω), Mu ∈ L2(0, T ;W 1,2(Ω)) solve the continuity
equation (1.1) in the sense of distributions. Then (1.1) is also satisfied in the sense
of renormalized solutions in the spirit of DiPERNA and LIONS [2] (cf. (1.7)). This
fact in turn plays the crucial role in the existence proof presented in [9].

The main contribution of [5], [7] to the existence theory lies in the observation
that one can replace the square integrability of the density by a different condition.
Specifically, assume that Ln, Mun is a sequence of renormalized solutions to the
equation (1.1) such that

Ln → L weakly star in L∞(0, T ;Lγ(Ω)),

Mun → Mu weakly in L2(0, T ;W 1,2(Ω)).


Suppose, in addition, that the following quantity

oscp[Ln − L] = sup
k≥1

(
lim sup
n→∞

‖Tk(Ln)− Tk(L)‖Lp((0,T )×Ω)

)
(2.4)

is bounded for a certain p > 2. Here Tk(z) = min{z, k} are the cut-off functions.
Then the limit functions L, Mu represent a renormalized solution of (1.1).

Boundedness of the quantity oscp[Ln− L] called the oscillation defect measure
is an essential ingredient of the existence theory presented in [7]. In fact, one can
show that it is bounded for p = γ + 1. This might indicate the proof should work
for any γ > 1 though there, of course, some unsurmountabe difficulties connected
with a priori estimates when N = 3.

3 General barotropic pressure laws

The first possible generalization of the above existence results addresses a general
barotropic pressure - density constitutive law p = p(L). More specifically, we shall
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assume

p = p(L) ∈ C1[0,∞), p(0) = 0,
1
a
Lγ−1− b ≤ p′(L) ≤ aLγ−1 + b for all L ≥ 0 (3.1)

for certain positive constants a, b.
Observe that p need be neither convex not even a monotone function of the

density. The non-monotone pressure-density constitutive laws occur, for example,
in astrophysics, nuclear astrophysics, low energy nuclear physics etc (cf. [3]).

The following result can be found in [3]:

Theorem 3.1. Theorem 2.1 remains valid in the case when the isentropic
pressure-density relation (2.1) is replaced by a general barotropic constitutive
law satisfying (3.1).

The general monotone pressure density relations are also discussed by LIONS
in [9].

4 Unbounded and/or irregular domains

The last question we want to discuss here is to which extent the existence results
presented above depend on the regularity of the spatial domain Ω. The first result
is proved in [3].

Theorem 4.1. Let Ω ⊂ R3 be a domain (not necessarily bounded) with com-
pact boundary of the class C2+ν , ν > 0. Let the data L0, Mq, Mf satisfy the
hypotheses of Theorem 2.1, and, in addition, let L0 ∈ L1(Ω). Finally, let the
pressure p be given by a constitutive law obeying (3.1) with γ > 3/2.
Then there exists a finite energy weak solution L, Mu of the problem (1.1)–(1.3)
satisfying the initial conditions (1.4).

Now, assume the boundary of Ω is not regular, say, not even Lipschitz. In
that case, we have to “give up” the differential form (1.5) of the energy inequality.
Integrating (1.5) with respect to t, we obtain

E[L, (LMu)](τ) +
∫ τ

0

∫
Ω

µ|∇Mu|2 + (λ+ µ)|div Mu|2 dx dt ≤ (4.1)

E0 +
∫ τ

0

∫
Ω

LMf · Mu dxdt for a.a. τ ∈ (0, T )
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where

E0 =
∫
Ω

1
2
|Mq|2
L0

+ P (L0) dx.

Replacing (1.5) by (4.1) in the definition of the finite energy weak solutions
(cf. Section 1), we shall speak about the bounded energy weak solutions of the
problem (1.1)–(1.3) for which we report the following rather general result (see
[6]):

Theorem 4.2. Let Ω ⊂ R3 be an arbitrary open set. Let the pressure p be
given by a general constitutive law obeying (3.1) with

γ > 3/2.

Let the initial data satisfy

L0 ≥ 0, L0, P (L0) ∈ L1(Ω), Mq ∈ L1(Ω),
|Mq|2
L0

∈ L1(Ω).

Finally, let Mf = Mf(t, x) be a given bounded measurable function.
Then the problem (1.1)–(1.3) complemented by the initial conditions (1.4) ad-
mits a bounded energy weak solution L, Mu on (0, T )×Ω, T > 0 arbitrary.
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