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Abstract. The limit behaviour of solutions of a singularly perturbed sys-
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case that the support of the limit invariant measure of the fast flow is an
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1 Introduction

We examine a singularly perturbed system of ordinary differential equations which
involves coupled slow and fast motions of the form

dx

dt
= f(x, y)

ε
dy

dt
= g(x, y),

(1.1)

with x ∈ Rn and y ∈ Rm. We assume throughout that f(·, ·) and g(·, ·) are contin-
uous functions. The initial value problem is determined by the initial conditions

x(0) = x0, y(0) = y0. (1.2)
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16 Z. Artstein

The solution to (1.1) depends on the parameter ε > 0. The variables x and y
are referred to as the slow state and the fast state, respectively. The form (1.1)
covers a variety of examples, including the case where the slow dynamics is not
present, and the case of time varying equations f = f(x, y, t) and g = g(x, y, t),
this by adding the slow variable t and the equation dt

dt = 1.
The solution to (1.1)–(1.2) is denoted by

(xε(·), yε(·)). (1.3)

We are interested in the limit behaviour of the trajectory (1.2) as ε→ 0.
The standard approach examines conditions which guarantee that the solutions

of (1.1) converge, as ε→ 0, to the solution of the differential-algebraic system (see
(2.1) below), obtained when in (1.1) the value of the parameter is set as ε = 0;
see O’Malley [9, Chapter 2, Section D], Tikhonov et al. [11, Chapter 7, Section 2],
Wasow [13, Section 39]. In the next section we state a theorem along this approach
and display an application of a relaxation oscillation type.

Setting ε = 0 in (1.1) yields the limit of solutions as ε → 0 under restrictive
conditions. In particular, a crucial condition is that for each fixed x, solutions of the
differential equation dy

ds = g(x, y) should converge, as s→∞, to a solution of the
algebraic equation 0 = g(x, y). A number of interesting examples were examined
recently where this condition is not satisfied. An approach was developed where
the stationary limit y(x) is replaced by a probability measure, say µ(x), with
µ(x) being an invariant measure of the equation dy

ds = g(x, y). See Artstein and
Vigodner [5], Artstein [1], [2], Artstein and Slemrod [3], [4]. In Section 3 we state
a theorem pertaining to this situation.

The price one pays to cover the more general case of measure-valued limits is
that the convergence to the limit is in a weaker sense; namely, one gets information
only about the limit distribution of the fast solutions. In Section 4, we present new
results which, under the condition that the support of the invariant measure is a
topological attractor of the fast flow, the information about the statistics of the
flow is complemented with information about the topological location of the flow.

The result is illustrated in Section 5 with a variation of the relaxation oscillation
example, where the limit is a measure-valued map, and where the topological
considerations help to determine the limit behaviour of the solutions.

2 A classical result

In this section we state a result along classical lines concerning the convergence of
solutions of (1.1) as ε→ 0. The abstract result is followed by an application.

Consider the differential-algebraic system obtained from (1.1) when ε is set to
be equal to 0, namely

dx

dt
= f(x, y)

0 = g(x, y),
(2.1)
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with the initial conditions displayed in (1.2). The terminology we use concerning
attraction and stability is standard. Consult, for instance, Yoshizawa [14].

Theorem 2.1. Assume:

i) y(·) : C → Rm is a given continuous function, where C is an open neighbor-
hood of x0, and such that g(x, y(x)) = 0 for x in C.

ii) For each x ∈ C, the point y(x) is a locally asymptotically stable equilibrium of
the differential equation

dy

ds
= g(x, y), (2.2)

where x in (2.2) is regarded as a fixed parameter. Furthermore, the asymp-
totic stability is locally uniform in the sense that the set {(x, y) : x ∈ C,
y ∈ Bas (y(x))} includes an open neighborhood of {(x, y(x)) : x ∈ C}, where
Bas (y(x)) is the basin of attraction of y(x) with respect to (2.2).

iii) Solutions of (2.2) are uniquely determined by initial conditions.
iv) The initial condition y0 is in the basin of attraction of y(x0) with respect to

equation (2.2) with the parameter x0.
v) The equation

dx

dt
= f(x, y(x)), x(0) = x0, (2.3)

has a unique solution as long as the solution stays in C. Denote this solution
by x0(·).

Then the following conclusions hold.

a) The slow part xε(·) of the solution (1.2) converges as ε→ 0 to x0(·), uniformly
on intervals of the form [0, T ], this as long as x0(t) stays in C.

b) The fast part yε(·) in (1.2) converges as ε → 0 to y(x0(·)), uniformly on
intervals of the form [δ, T ] for δ > 0, this as long as x0(t) stays in C.

c) On intervals [0, S] with S > 0 fixed, the trajectories ȳε(·) converge uniformly,
as ε → 0, to y0(·), where ȳε(s) is derived from the fast part yε(t) of (1.2)
through the time change t = εs; and y0(·) is the solution of (2.2) with the
parameter x = x0, and with initial condition y(0) = y0. The limit as S → ∞
of limε→0 yε(εS) is equal to y(x0).

The results in Theorem 2.1 follow classical lines, with, however, a slight im-
provement as the proofs available in the literature assume that the data f and g
are continuously differentiable; see [13, Theorem 39.1] and [11, Theorem 7.4] (the
differentiability is not stated explicitly in [13], but the proof relies on [10] which
assumes it). Since Theorem 2.1 follows from Theorem 4.1 below as a particular
case (see Remark 4.2), we provide here only a telegraphic sketch of the main steps
of the proof.

Proof (Proof of Theorem 2.1 (a brief sketch)). A change of time scale εs = t fol-
lowed by a standard continuous dependence argument and together with condition
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(iv), imply conclusion (c). By (iii) and (ii), for ε small, once the fast solution yε(·)
in (1.2) reaches within a short time a small neighborhood of the manifold (x, y(x)),
it stays there. In particular, xε(·) solves an equation which is a small perturbation
of (2.3). Condition (v) together with a standard continuous dependence argument
imply that xε(t) is close to x0(t) uniformly on compact intervals. This verifies (a).
The facts that yε(t) is close to y(xε(t)) on compact intervals bounded away from
t = 0, and that x0(t) and xε(t) are close to each other for small ε, imply conclusion
(b), and conclude the proof.

In the rest of this section we examine an example which illustrates the appli-
cability of the theorem.

Example 2.2. Consider the system

dx

dt
= y

ε
dy

dt
= −x+ y − y3.

(2.4)

When following the scheme suggested in Theorem 2.1, one should first detect the
roots of the equation

0 = −x+ y − y3. (2.5)

x
1.5

1.5

y

Figure 1

The graph of the solution is displayed in Figure 1. The next step is to locate
those points in the graph which are locally asymptotically stable with respect to
the differential equation

dy

ds
= −x+ y − y3. (2.6)
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It is easy to see that each point (x, y) in the displayed graph such that |y| > 3−
1
2 ,

possesses the local asymptotic stability property. Consider now an initial condition,
say (x(0), y(0)) = (−2, 0). The upper branch of the graph can be represented as a
function y(x) as required in Theorem 2.1, and all the conditions are satisfied for
x satisfying x < 3−

3
2 2. The conclusion is as follows. For small ε, on a short time

interval the state x = −2 hardly changes, while the values yε(t) converge to the
value y(−2) = −1.44225. Following that short boundary layer interval, the solution
stays close to the upper branch of the graph, following the pair (x0(t), y(x0(t)))
with x0(·) being the solution of dx

dt = y(x) with x0(0) = −2 (which implies that

x(·) is increasing). This description is valid until x0(t) reaches the value 3−
3
2 2.

In this specific example one can go beyond the point where x0(t) is equal to
3−

′frac322. Indeed, right after that, the point yε(t) enters the basin of attraction
of the lower branch of the graph. The analogous analysis implies that in a very
short interval the solution reaches a neighborhood of the lower branch, and then
a slow dynamics following the lower branch occurs, with xε(·) decreasing, until
x0(t) = −3−

3
2 2; and so on and so forth. Thus, the trajectory generates a well-

known relaxation oscillation dynamics, as portrayed in bold in Figure 1 (the arrows
point to the direction of the dynamics while a double arrow signifies fast motion).

3 The case of measure-valued limits

In this section we state a result concerning the convergence of solutions of (1.1)
as ε → 0, when the fast flow may not converge to an equilibrium. A comparison
with the result of the previous section follows.

We consider probability measure-valued maps. Denote by P(Rm) the family of
probability measures on Rm. The measure-valued maps that we consider are maps
of the form

µ(·) : [0, T ] → P(Rm), (3.1)

which are measurable in the sense that µ(·)(B) is a measurable real-valued function
for each Borel setB inRm. Such maps are also referred to in the literature as Young
measures. A real valued function h(·) : [0, T ] → Rm is interpreted as a measure-
valued map when each value h(t) is regarded as the Dirac measure supported on
{h(t)}. We endow the space of Young measures with a convergence derived from
the weak convergence of measures on P(Rm) as follows. (We shall not refer to
the weak convergence itself; a reference on this notion is, e.g., Billingsley [6].) A
sequence µi(·) converges to µ0(·) if∫ T

0

∫
Rm

γ(t, y)µi(t)(dy)dt→
∫ T

0

∫
Rm

γ(t, y)µ0(t)(dy)dt (3.2)

for every γ(t, y) : [0, T ]×Rm → R which is bounded, measurable in t and continu-
ous in y. We refer to this convergence as the narrow convergence or as convergence
in the sense of Young measures. The convergence yields information about the
distribution of the values. Indeed, if a sequence of Rm-valued functions, say hi(·),
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converges in the sense of Young measures to the measure valued map µ0(·), then
for each subset A of positive measure in the interval [0, T ], the distribution of the
values of {hi(t) : t ∈ A} is close to the distribution derived by integrating µ0(·)
over A.

We also need the notion of an invariant measure of a differential equation.
Let y(·, y0) be the solution of the differential equation dy

ds = g(y) with the initial
condition y(0) = y0, and assume that such a solution is unique. A probability
measure on Rm is an invariant measure of the differential equation if for every
Borel set B ⊆ Rm, the equality µ(B) = µ({y(s, y0) : y0 ∈ B}) holds for every s.

Theorem 3.1. Assume:

i) On an interval [0, T ], the values (xε(t), yε(t)) of the solutions (1.3) of (1.1)–
(1.2) for ε > 0 in a neighborhood of 0, are uniformly bounded in Rn × Rm,
say (xε(t), yε(t)) ∈ C ×D with C an open set and D a closed set.

ii) For each x ∈ Rn, solutions of the differential equation (2.2) where x in (2.2)
is regarded as a fixed parameter, are uniquely determined by initial conditions.

iii) For every x ∈ C, an invariant measure µ(x) of (2.2) with support in D exists,
and it is unique.

iv) The equation
dx

dt
=
∫
Rm

f(x, y)µ(x)(dy), (3.3)

with initial condition x(0) = x0, has a unique solution on [0, T ]. Denote this
solution by x0(·).

Then the following conclusions hold.

a) The trajectories xε(·) converge to x0(·), as ε→ 0, uniformly on compact sub-
sets [0, T ′] of [0, T ] on which x0(t) ∈ C.

b) The trajectories yε(·) converge in the sense of Young measures, as ε → 0, to
µ(x0(·)), as long as x0(t) ∈ C.

Results similar to those of Theorem 3.1 with complete proofs are presented in
[5], [2], [3], [4]. Here we provide a sketch of the proof.

Proof (Proof of Theorem 3.1 (sketched)). The uniform boundedness of the term
(xε(·), yε(·)) implies the existence of a subsequence εi such that xεi(·) converges
uniformly, say to x̄0(·), and yεi(·) converges in the Young measure sense to a prob-
ability measure-valued map, say µ̄(·). A classical continuous dependence argument
implies that x̄0(·) is a solution of (3.3) with µ(x) replaced by µ̄(t). Consider now
the change of time scale t = εis. Then yεi(·) solves the equation dy

ds = g(xεi(εs), y).
On a small t interval the coefficient xεi(εs) is almost constant, hence yεi(·) is close
on finite intervals to the solution with a constant parameter x. The s interval may,
however, be large enough such that the distribution of the values yεi(s) yields an
approximation to an invariant measure of the equation with the fixed parameter
(along the lines of Kriloff and Bogoliuboff [8]). These arguments imply that almost
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everywhere, µ̄(t) is an invariant measure of (2.2) with x = x0(t). The uniqueness
assumed in (iii) implies that µ̄(·) = µ̄(x0(·)), and hence x̄0(·) solves (3.3). It also im-
plies that the convergence claims (a) and (b) hold for the subsequence determined
by εi. The uniqueness of the invariant measure, and the compactness, namely, that
converging subsequences can be extracted from any subsequence, imply that (a)
and (b) hold.

Remark 3.2. One can get a meaningful result even without conditions (iii) and (iv).
Namely, (a) and (b) then hold for a subsequence εi, with µ(t) being an invariant
measure (rather than the invariant measure) of (2.2) in D. This claim follows from
the proof.

Remark 3.3. It is clear that rather than demanding that the solutions be included
in a set C ×D (see condition (i)), we could ask that the solution be included in a
set of a form {(x, y) : x ∈ C, y ∈ D(x)}, as long as D(x) is closed, and the graph
of D(·) is the closure of an open set.

Discussion 3.4. The claims in Theorem 3.1 have been established under condi-
tions milder than those of Theorem 2.1. In turn, the established convergence yields
desired information about the limit distribution of the values of the solutions, but
only partial information concerning the topological limits of the fast flow. Indeed,
a sequence of functions may converge in the sense of Young measures without
point-wise convergence or topological convergence of the graphs. (A trajectory
may converge in distribution to a fixed point, while topologically converging to
a full cycle which contains the fixed point.) This is reflected in the lack, in The-
orem 3.1, of an analog of the boundary layer claim (c) of Theorem 2.1. Indeed,
the behaviour of yε(·) on intervals [0, εS] does not affect the limit distribution.
The applications and illustrations listed in references [5], [2], [3], [4] employ ad hoc
arguments to derive better information about the topological behaviour. In the
next section we offer a general result in this direction.

4 A combined argument

In this section we combine the arguments of Theorems 2.1 and 3.1 into one set
of conditions which yields information on both, the limit topology and the limit
distribution of the solutions. To this end we need the following standard notions.

When y ∈ Rm and K ⊆ Rm we write d(y,K) = inf{|y − z| : z ∈ K}.
The Hausdorff distance between two compact sets K1 and K1 is H(K1,K2) =
max{d(z,K1), d(y,K2) : y ∈ K1, z ∈ K2}.

The compact set K in Rm is an asymptotically stable attractor of the differ-
ential equation dy

ds = g(y) if: (1) for every η > 0 there exists a δ > 0 such that if
y(·) is a solution of the equation and d(y(0),K) < δ, then d(y(s),K) < η for all
s > 0, and, (2) a number b > 0 exists such that whenever y(·) is a solution of the
equation and d(y(0),K) < b then d(y(s),K) → 0 as s → ∞. (See Ura [12] for a
comprehensive study of asymptotically stable attractors.)
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The support of a probability measure µ on Rm (namely the smallest closed set
C such that µ(C) = 1) is denoted by supp µ.

Theorem 4.1. Assume:

i) µ(·) : C → P(Rm) is a given Young measure, where C is an open neigh-
borhood of x0, and such that for each x ∈ C the set supp µ(x) is compact,
and supp µ(·) is continuous in the x variable with respect to the Hausdorff
distance. Furthermore, for each x in C the measure µ(x) is an invariant mea-
sure of (2.2), and it is the unique invariant measure with support included in
supp µ(x).

ii) For each x ∈ C, the set supp µ(x) is an asymptotically stable attractor of
(2.2) where x is regarded as a fixed parameter. Furthermore, the asymptotic
stability is locally uniform in the sense that the set {(x, y) : x ∈ C, y ∈
Bas (supp µ(x))} includes an open neighborhood of {(x, y) : x ∈ C, y ∈
supp µ(x))}, where Bas (supp µ(x)) is the basin of attraction of supp µ(x)
with respect to (2.2).

iii) Solutions of (2.2) are uniquely determined by initial conditions.
iv) The initial condition y0 is in the basin of attraction of supp µ(x0) with respect

to the equation (2.2) with the parameter x0.
v) Equation (3.3) with initial condition x(0) = x0, has a unique solution as long

as the solution is in C. Denote this solution by x0(·).

Then the following conclusions hold.

a) The slow part xε(·) of the solution (1.3) converges, as ε → 0, to x0(·), uni-
formly on intervals of the form [0, T ], this as long as x0(t) stays in C.

b) The fast part yε(·) in (1.3) converges in the sense of Young measures, as ε→ 0,
to µ(x0(·)), on intervals of the form [0, T ], this as long as x0(t) stays in C.

c) The distance d(yε(t), supp µ(x0(t))) converges to 0, as ε → 0, uniformly on
intervals of the form [δ, T ] for δ > 0, this as long as x0(t) stays in C.

d) On intervals [0, S] with S > 0 fixed, the trajectories ȳε(·) converge uniformly,
as ε → 0, to y0(·); where ȳε(s) is derived from the fast part yε(t) of (1.3)
through the time change t = εs, and y0(·) is the solution of (2.3) with the
parameter x = x0, and with initial condition y(0) = y0. The limit as S → ∞
of limε→0 d(yε(εS), supp µ(x0)) is equal to 0.

Proof. The proof consists of a combination of arguments employed when The-
orems 2.1 and 3.1 are established. We start with claim (d). The change of time
scales εs = t converts the singularly perturbed equation (1.1) on [0, εS] into a non-
singularly perturbed one on [0, S]. Since by (iv) the solution y0(·) stays bounded,
it follows that for ε small and S fixed, the values xε(t) for t ∈ [0, εS] converge
uniformly to x0 as ε → 0. A standard continuous dependence argument implies
that ȳε(·) converges uniformly on any fixed interval [0, S], as ε→ 0, to y0(·) . Now,
the convergence of limε→0 d(yε(εS), supp µ(x0)) to 0 follows directly from (iv).

We now verify that if for small ε the value yε(t) is close to supp µ(xε(t)), then
yε(·) stays close to the graph of supp µ(x). The exact statement is as follows.
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Claim 1. Let K ⊂ C be compact. For every η̄ > 0 there exist θ̄ > 0 and ε0 such
that for ε < ε0 if d(yε(δ), supp µ(xε(δ))) < θ̄ then d(yε(t), supp µ(xε(t))) < η̄ for
t > δ, as long as xε(t) ∈ K.

To verify the claim we can assume that η̄ is such that an η̄-neighborhood of
supp µ(x) is in Bas (supp µ(x)) for all x ∈ K. Existence of such an η̄ > 0 follows
from (ii). For every x ∈ K there exists a θ(x) > 0 such that if d(ȳ, supp µ(x)) <
θ(x) and y(x)(·) is the solution of (2.2) satisfying y(x)(0) = ȳ then we have
d(y(x)(s), supp µ(x)) < η̄ for s ≥ 0. This follows from condition (ii). The com-
pactness of K implies that θ(x) can be chosen independent of x; we choose θ̄ to be
the independent value. If the claim is false, then a sequence of εi → 0 exists such
that d(yεi(ti), supp µ(xεi (ti))) = θ̄ while d(yεi(ti +∆i), supp µ(xεi(ti +∆i))) = η̄
for some ti and ∆i, while xεi (t) ∈ K and θ̄ ≤ d(yεi(t), supp µ(xεi(t))) ≤ η̄ for
t ∈ [ti, ti + ∆i]. A change of variables s = ε−1(t − ti) converts the fast equa-
tion in (1.1) into the form (2.2) with, however, a time varying parameter xε(s).
For short (t − ti)-intervals this parameter does not vary much. We may assume
that xεi(ti) converges, say to x̄ ∈ K. Hence, as εi → 0, the trajectories yεi(·) for
s ∈ [0, ε−1∆], converge uniformly on compact s-intervals to the solution y0(·) of
(2.2) with the parameter x̄. Two possibilities may occur. First, that εi∆i → ∞.
Then θ̄ ≤ y0(s) ≤ η̄ for all s ≥ 0, which contradicts condition (ii) of the theorem.
Secondly, that εi∆i is finite. Then d(y0(s), supp µ(x̄)) = η̄ for some s > 0, which
contradicts the choice of η̄. The two alleged contradictions verify that Claim 1 is
valid.

Together with property (d) which was verified earlier, Claim 1 completes the
proof of property (c).

At this point notice that for every δ > 0, if ε is small enough, the values
(xε(t), yε(t)) of the solutions (1.3) of (1.1)–(1.2), for t ∈ [δ, T ], remain, as long
as xε(t) ∈ C, within an η̄-neighborhood of the graph of supp µ(·), with a small
positive η̄. For a compactK ⊂ C the η̄-neighborhood can be chosen to be contained
in the union of basins of attraction of the corresponding supp µ(x). Since η̄ is
arbitrarily small, we can apply Theorem 3.1 (in fact, the extension mentioned in
Remark 3.3), and deduce the uniform convergence of xε(·) to the solution x0(·)
of (3.3) with the initial condition x(0) = x0, and the convergence in the Young
measures sense of yε(·) to µ(x0(·)), this as long as x0(t) ∈ C, as claimed in (a) and
(b). This completes the proof.

We wish to point out several consequences and extensions of the preceding
result, as follows.

Remark 4.2. Theorem 2.1 is a particular case of Theorem 4.1, since the equilibrium
y(x) is a particular case of an invariant measure, supported on {y(x)}, of the
differential equation.

Remark 4.3. The uniqueness of the invariant measure assumed in condition (i)
implies a bit more than stated concerning the topological convergence, as follows.
Let t0 > 0 in the domain of x0(·) and let η > 0 be given. For any fixed τ > 0 small
enough, for small enough ε the set {yε(t) : t0−τ ≤ t ≤ t0+τ} is within a Hausdorff
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distance η from supp µ(x0(t0)). Otherwise the arguments in Theorem 3.1 yield an
invariant measure with a strictly smaller support.

Remark 4.4. Rather than requiring that supp µ(x) is an asymptotically stable
attractor, we could demand the existence of an asymptotically stable attractor
K(x) of (2.2), which contains supp µ(x) and such that K(·) is continuous with
respect to the Hausdorff distance. The consequence then would be the topological
convergence to K(x0(t)), and the rest would stay unchanged (but Remark 4.3
would not be valid anymore).

Remark 4.5. If the uniqueness of the invariant measure supported on supp µ(x) is
lifted, a weaker consequence holds, in full analogy to Remark 3.2. The consequences
concerning the topological convergence remain then as in Theorem 4.1.

5 An example

We display a variant of Example 2.2 as an illustration demonstrating the applica-
bility of Theorem 4.1.

Example 5.1. Consider the system

dx

dt
= y1

ε
dy1
dt

= y2

ε
dy2
dt

= g(x, y1, y2)

(5.1)

with x, y1, y2 scalars, and when g(x, y1, y2) is designed as follows. For a fixed x,
the system

dy1
ds

= y2

dy2
ds

= g(x, y1, y2)
(5.2)

has stationary points of the form (y1, 0) with y1 satisfying

0 = −x+ y1 − y3
1 (5.3)

(compare with the graph of the equilibria in Figure 1; for clarity of the drawing,
the y2-axis in Figure 2 originates at (0, 1, 0)). Furthermore, for x fixed, all the
equilibria of (5.2) are unstable, and all other solutions converge to locally stable
periodic orbits around either the upper or the lower branch of the equilibria curve
(in particular, for |x| > 3−

3
2 2 there is only one periodic limit cycle). The general

structure of the equilibria and of the limit cycles is portrayed in Figure 2. Such
a structure occurs in the following situation. Let zup(x) and zlo(x) denote the
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upper and, respectively, the lower branches of the equilibria determined by (5.3)
(in particular, for |x| > 3−

3
2 2 there is only one equilibrium). In a neighborhood of,

say, zup(x), the right hand side of (5.2) is determined by

g(x, y1, y2) = α(x)(1 −A(x)(y1 − zup(x))2)y2 − (y1 − zup(x)), (5.4)

with A(x) → ∞ and α(x)A(x) → 0 as x → 3−
3
2 2. Indeed, then for a fixed x <

3−
3
2 2, equation (5.2) is a van der Pol equation centered around zup(x) with its limit

cycle converging to a point as x → 3−
3
2 2. Compare with Boyce and DiPrima [7,

page 417]. The same equation with zlo(x) replacing zup(x), and with the conditions
on A(x) and α(x) holding as x → −3−

3
2 2 would produce a limit cycle of (5.2)

centered around zlo(x) and vanishing as x → −3−
3
2 2. Gluing the two parts into

a single global vector field is simple.

y

y
1.5

2

1

x
1.5

Figure 2

It is easy to see that each of the limit cycles around the points zup(x) possesses
a local asymptotic stability property. Equivalently, the support of the invariant
measure induced by the dynamics on each limit cycle is an asymptotically sta-
ble attractor as required in Theorem 4.1. Consider now an initial condition, say
(x(0), y1(0), y2(0)) = (−2, 0, 0). The invariant measures supported on the limit
cycles associated with the upper branch of the graph can be represented as a
function µ(x) as needed in Theorem 4.1, and all the conditions are satisfied for x
satisfying x < 3−

3
2 2. The conclusion is as follows. For small ε, the state x = −2

hardly changes in a short time interval, while the solution yε(·) converges to the
limit cycle around (y1, y2) = (−1.44225, 0). Following that short boundary layer
interval, the solution continues its fast movement, following closely the limit cycles
both topologically and statistically, this while in the x direction there is a slow
movement following the x-equation in (5.1). This description is valid until x0(t)
reaches the value 3−

3
2 2.
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In this specific example one can go beyond the point where x0(t) is equal
to 3−

3
2 2. Indeed, right after that, the point yε(t) enters the basin of attraction

of the lower branch of the graph. The analogous analysis implies that in a very
short interval the solution reaches a neighborhood of the stable limit cycle around
(y1, y2) = (−1.44225, 0), and the fast dynamics continues along the limit cycles
around the lower branch of the equilibria, while a slow down drift of x occurs, until
x0(t) = −3−

3
2 2; and so on and so forth. Thus, the trajectory generates a relaxation

oscillation dynamics where the slow motion is only in the x variable, while fast
motion prevails in the (y1, y2) space, as portrayed in bold in Figure 2 (double
arrow signifies fast motion).
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