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1 Introduction

In this paper we study mainly parabolic problems of the form
ut −∆u = f(x, u), x ∈ Ω, t > 0,
u = 0, x ∈ Γ, t > 0,
u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where Ω is a domain in Rn with a smooth compact boundary Γ and f is a Cara-
théodory function which is superlinear in u. Some generalizations and modifica-
tions of (1.1) are also considered.

It is well known that under suitable assumptions on f the problem (1.1) is
well posed in an appropriate Banach space X (X = L∞(Ω), for example). Denote
by u(t, u0) the solution of this problem and let Tmax(u0) be its maximal existence
time. Assume δ > 0. Our main aim is to show that for a large class of nonlinearities,
the norm of u(t, u0), t ∈ [0, Tmax(u0) − δ), can be bounded by a constant which
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depends only on δ and on the norm of the initial condition u0. In other words, we
are interested in the estimate

‖u(t, u0)‖X ≤ C(δ, c0)

{
for any u0 ∈ X with ‖u0‖X ≤ c0,
and any t < Tmax(u0)− δ,

(1.2)

where Tmax(u0)−δ = ∞ and C(δ, c0) does not depend on δ if Tmax(u0) = ∞. Note
that under some circumstances global solutions are bounded even if the estimate
(1.2) does not hold for these solutions, see V. Galaktionov and J.L. Vázquez [16]
or M. Fila and P. Poláčik [13]. For a survey on the boundedness of global solutions
we refer to [12].

We shall also mention some results on universal bounds of the form

‖u(t, u0)‖X ≤ C(δ1, δ2) for any t ∈ (δ1, Tmax(u0)− δ2), (1.3)

where the constant C(δ1, δ2) does not depend on u0 at all.
The bound (1.2) has several important consequences. It implies the continu-

ity of the maximal existence time Tmax : X → (0,∞], it plays a crucial role in
establishing the blow-up rate of blowing-up solutions, in the study of domains of
attraction of stable equilibria and connecting orbits between various equilibria.
It can also be used for the proof of existence of multiple stationary and periodic
solutions.

Let us first discuss the model case f(x, u) = |u|p−1u, p > 1, Ω ⊂ Rn bounded.
Set

pS := (n+ 2)/(n− 2) if n ≥ 3, pS := ∞ otherwise.

The bounds (1.2) and (1.3) and their proofs are strongly related to the a pri-
ori estimates for positive stationary solutions of (1.1) which were proved in the
subcritical case p < pS by D.G. de Figueiredo, P.-L. Lions and R.D. Nussbaum
[11] and B. Gidas and J. Spruck [17] (partial results were obtained before by
R.E.L. Turner [36], R.D. Nussbaum [26], H. Brézis and R.E.L. Turner [5]). Due to
the result of S.I. Pohozaev [27], the condition p < pS is optimal in these estimates
(at least if Ω is starshaped). The bound (1.2) for the time-dependent solutions
of this model problem was derived for any p < pS by the author in [28] under
the assumption Tmax(u0) = ∞. Partial results requiring a stronger condition on p
and/or nonnegativity of u were previously obtained by W.-M. Ni, P.E. Sacks and
J. Tavantzis [25], T. Cazenave and P.-L. Lions [6] and Y. Giga [18]. The condition
p < pS is optimal again.

Considering a general superlinear function f , the results on a priori estimates
for positive stationary solutions mentioned above are far from satisfactory: they
require either Ω to be convex or various technical conditions on f (either mono-
tonicity of u #→ f(x, u)u−pS in [11] or a precise asymptotic behavior of f(x, u)
as u → +∞ in [17]). ¿From this point of view it is interesting to know to what
extent can one generalize the results of [28] concerning the estimate (1.2) for the
time-dependent solutions. The approach in [28] is based on a bootstrap argument,
interpolation, energy and maximal regularity estimates. It turns out that the as-
sumption Tmax(u0) = ∞ and the precise asymptotic behavior of the nonlinearity f
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as |u| → ∞ are not important for this approach. Moreover, the results remain true
for more general differential operators, boundary conditions and nonlinearities.

In Section 2 we discuss the estimate (1.2) for (1.1) and some of its consequences
(including continuity of Tmax and existence of nontrivial equilibria) in the case
of a bounded spatial domain Ω. In Section 3 we study the unbounded domain
case. Section 4 is devoted to time-dependent nonlinearities and the existence of
periodic solutions. In Section 5 we briefly mention some results on the universal
bound (1.3) and initial and final blow-up rates. In Sections 6,7 and 8 we deal
with nonlinear boundary conditions, nonlocal problems and problems involving
measures, respectively. For one-dimensional problems we refer to [31, Section 6]
and [7, Section 5].

2 Bounded domains

Denote F (x, u) :=
∫ u

0
f(x, v) dv and assume that there exist positive constants

p1, p2, d1, d2, d3, d4, β, r and nonnegative functions

a1 ∈ L(p1+1)/p1(Ω), a2 ∈ L(p2+1)/p2(Ω), a3 ∈ L1(Ω), a4 ∈ Lβ(Ω) (2.1)

such that

1 < p1 ≤ p2 < pS , d3 > 2, β > n/2, r < pS , (2.2)

|f(x, u)| ≤ d2|u|p2 + a2(x), (2.3)

f(x, u) sign(u) ≥ d1|u|p1 − a1(x), (2.4)

f(x, u)u ≥ d3F (x, u)− a3(x), (2.5)

|f(x, u)− f(x, v)| ≤ d4(a4(x) + |u|r−1 + |v|r−1)|u− v|. (2.6)

Assume also that either p2 < pCL or

p2 − p1 < κ1(p2), (2.7)

where κ1 : (1, pS) → (0,∞) is defined in [31] (cf. Figures 1 and 2 below) and

pCL := (3n+ 8)/(3n− 4) if n ≥ 2, pCL := ∞ if n = 1.

Set

E(u) :=
1
2

∫
Ω

|∇u|2 dx −
∫
Ω

F (x, u) dx.

Then we have the following theorem (see [31] and [32]).

Theorem 2.1. Consider the problem (1.1). Let Ω be a smoothly bounded domain
in Rn. Assume (2.1)-(2.6) and either p2 < pCL or (2.7). Set X := H1

0 (Ω). Then
the estimate (1.2) is true, Tmax : X → (0,∞] is continuous and

E(u(t, u0)) → −∞ as t→ Tmax(u0)− if Tmax(u0) <∞. (2.8)
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If, in addition, β > n, f(·, 0) ∈ Lβ(Ω), us is an asymptotically stable equilib-
rium of (1.1) in X and DA denotes its domain of attraction,

DA = {u0 ∈ X u(t, u0) exists globally, u(t, u0) → us in X as t→∞},

then there exist stationary solutions u+, u−, ũ ∈ ∂DA of (1.1) such that u+ >
us > u− and ũ− us, ũ− u+, ũ− u− change sign.

Remarks 2.1. (i) The condition (2.7) in Theorem 2.1 seems to be of technical
nature. In fact, if

f(x, u)u ≤ d5F (x, u) + a5(x), d5 > 0, a5 ∈ L1(Ω),

then this assumption can be replaced by

p2 − p1 < κ2(p2), (2.9)

where κ2 : (1, pS) → (0,∞) is defined in [31], κ2 > κ1 (see Figures 1 and 2). The
same is true for all assertions in the subsequent sections.

In Figures 1 and 2 we set p(n) := 1 + 4/n,

p∗ :=


9n2 − 4n+ 16

√
n(n− 1)

(3n− 4)2
if n ≥ 2,

+∞ if n = 1.

Note that the condition (2.7) or (2.9) is superfluous if p ≤ p(n) or p < p∗, respec-
tively.

1 p(n) = 3 pCL = 7 p∗ .= 12.6 16 p2

1
2

2
√

2

p2 − p1

p1 = 1

κ1
κ2

✲

✻

Figure 1. Functions κ1, κ2 for n = 2
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1 p(n) pCL p∗ pS p2

4/3

0.4
κ∗

p2 − p1

p1 = 1

κ1

κ2

✲

✻

Figure 2. Functions κ1, κ2 for n = 3:
p(n) = 2 + 1/3, pCL = 3.4, p∗ .= 4.3, pS = 5, κ∗ .= 0.27

(ii) The property (2.8) plays an important role in the proof of complete blow-
up, see [2]. This property was proved before by H. Zaag [37] for the model case
f(x, u) = |u|p−1u under additional assumptions p(3n− 4) < 3n+ 8 or u ≥ 0.

(iii) Continuity of Tmax for nonnegative solutions, bounded domains Ω and con-
vex functions f = f(u) with subcritical growth was previously proved by P. Baras
and L. Cohen [2]. Note that the function Tmax need not be continuous in the su-
percritical case, due to a result of V. Galaktionov and J.L. Vázquez [16]. More
precisely, the set {u0 Tmax(u0) = ∞} need not be closed.

(iv) If us = 0 in Theorem 2.1 then this theorem guarantees the existence of
a sign-changing equilibrium ũ of (1.1) lying on ∂DA. Similar assertions (without
the information ũ ∈ ∂DA) were proved by variational and topological methods by
many authors: see the discussion in [32], for example.

3 Unbounded domains

Let F and E be the same as in Section 2. Assume that there exist positive constants
p1, p2, d1, d2, d3, d4, β, r satisfying (2.2) and nonnegative constants e1, C1 such that

|f(x, u)| ≤ d2(|u|p2 + |u|) + a2(x), (3.1)

f(x, u) sign(u) ≥ d1|u|p1 − e1|u| − a1(x), (3.2)

f(x, u)u ≥ d3F (x, u) + C1u
2 − a3(x), (3.3)

|f(x, u)− f(x, v)| ≤ (a4(x) + d4(1 + |u|r−1 + |v|r−1))|u− v|, (3.4)

f(·, 0) ∈ Lβ(Ω), (3.5)
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where a1, a2, a3, a4 satisfy (2.1). Notice that the assumptions (3.1)–(3.4) are equiv-
alent to (2.3)–(2.6) if Ω is bounded. The conditions above guarantee, in particular,
that the problem (1.1) is well posed in H1

0 (Ω). Denote by Tmax(u0) the maximal
existence time of the solution in H1

0 (Ω). Then we have the following theorem (see
[31]).

Theorem 3.1. Let Ω ⊂ R
n have a smooth compact boundary (or Ω be a half-

space). Assume (2.1)–(2.2), (3.1)–(3.5) and (2.7). Set

X := H1
0 (Ω) ∩ L(p2+1)/p2(Ω) ∩ L∞(Ω),

assume u0 ∈ X and let

TX
max(u0) := sup{t ∈ [0, Tmax(u0)) u(τ) ∈ X for τ ≤ t}.

Then the following holds:
(i) TX

max(u0) = Tmax(u0), Tmax : X → (0,∞] is continuous and (2.8) is true.
(ii) Let C1 > 0 in (3.3) and let there exist constants d6, λ > 0, α ∈ (1, p2),

a nonnegative function a6 ∈ L(p2+1)/p2(Ω) and a bounded measurable function
V : Ω → [λ,∞) such that

|f(x, v) + V (x)v| ≤ d6(|v|p2 + |v|α) + a6(x).

Let u0 ∈ X and Tmax(u0) = ∞. Then there exists a constant C = C(‖u0‖X) such
that

‖u(t)‖X ≤ C for any t ≥ 0. (3.6)

Remarks 3.1. (i) We are not able to show the bound (1.2) if Tmax(u0) <∞. Con-
sequently, the proof of the continuity of Tmax requires some additional arguments
(using a refinement of the concavity method due to H.A. Levine [23]). Note that all
previous results concerning the estimate (3.6) and the continuity of Tmax required
a stronger assumption on the growth of f or they were restricted to nonnegative
solutions and nonlinearities with a precise asymptotic behavior (see C. Fermanian
Kammerer, F. Merle and H. Zaag [10], for example).

(ii) If λ > 0 and 1 < p < pS then f(x, u) := |u|p−1u − λu satisfies all assump-
tions of Theorem 3.1(ii).

4 Periodic solutions

In this section we study a priori estimates of solutions and existence of positive
periodic solutions of the problem

ut −∆u = m(t)f(u), x ∈ Ω, t > 0,
u = 0, x ∈ Γ, t > 0,
u(x, 0) = u0(x), x ∈ Ω,

(4.1)

where Ω is a smoothly bounded domain in Rn, m > 0 is T -periodic and f(u) =
|u|p−1u, 1 < p < pS . We refer to [32] for the case of a general superlinear function
f = f(u) and to [22] for the case f = f(x, u).
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Theorem 4.1 (see [32]). Let Ω ⊂ Rn be smoothly bounded, m ∈ W 1
∞(R) be

T -periodic, m(t) ≥ m0 > 0 for any t, f(u) = |u|p−1u, 1 < p < pS. Set X :=
H1

0 (Ω).
(i) Let u be the solution of (4.1), Tmax(u0) ≥ T + δ, δ > 0. Then there exists

a constant C = C(‖u0‖X , δ, T ) such that

‖u(t)‖X ≤ C for any t ∈ [0, T ].

(ii) Assume

(m′(t))−

m(t)
<

2n− (n− 2)(p+ 1)
r2(Ω)

for a.a. t ∈ (0, T ), (4.2)

where r(Ω) is the radius of the smallest ball containing Ω and a− := max(0,−a).
Then there exists at least one positive T -periodic solution of (4.1) and there exists
C > 0 such that any positive T -periodic solution of (4.1) satisfies

‖u(t)‖X ≤ C for any t ∈ [0, T ].

Remarks 4.1. (i) The technical assumption (4.2) is superfluous if p(n− 2) < n.
(ii) Existence of positive periodic solutions of (4.1) with f(u) = |u|p−1u (and

more general nonlinearities) was obtained before by M.J. Esteban in [8] and [9]
under the additional assumptions (3n−4)p < 3n+8 and p(n−2) < n, respectively.

(iii) Assertion (i) in Theorem 4.1 is based on the fact that the functional

V (u(t)) =
1
2

∫
Ω

|∇u(t)|2 dx−m(t)
∫
Ω

F (u(t)) dx

is “almost” a Lyapunov functional for (4.1). A Pohozaev’s type identity plays
a significant role in the proof of (ii) (cf. [11] in the elliptic case).

(iv) A different approach to problems without variational structure can be
found in [33].

5 Universal bounds and blow-up rates

In this section we are interested in the universal bound (1.3) for positive solutions
of (1.1) (note that this bound cannot be true for all solutions, in general). The
following theorem follows from the results in [35].

Theorem 5.1. Consider the problem (1.1) with Ω ⊂ Rn being (smoothly) bounded
and convex, f(x, u) = |u|p−1u, 1 < p < pS, u0 ≥ 0. Let p(n− 3) < n− 1 if n ≥ 5
and Tmax(u0) ≥ T0 > 0. Set X := L∞(Ω). Then there exist C(p,Ω, T0) > 0 and
α = α(n, p) > 0 such that

‖u(t)‖X ≤ C(p,Ω, T0)(1 + t−α + (Tmax(u0)− t)−1/(p−1))

for any t ∈ (0, Tmax(u0)), where (Tmax(u0)− t)−1/(p−1) := 0 if Tmax(u0) = ∞.
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Remarks 5.1. (i) The convexity of Ω is needed only for the estimate of u(t) close
to Tmax(u0). The assumption p < (n−1)/(n−3) for n ≥ 5 seems to be of technical
nature.

(ii) If p < 1+2/(n+1) then one can choose α = (n+1)/2 in Theorem 5.1 and
this choice is optimal. Note that this initial blow-up rate exponent is different from
the corresponding exponent for the homogeneous Neumann problem (see [35]).

(iii) Due to the result of M.-F. Bidaut-Véron in [4] concerning the Cauchy
problem, one can conjecture that the choice α = 1/(p−1) should be possible (and
optimal) for p ≥ 1 + 2/(n+ 1) but this seems to be an open problem.

(iii) The (final) blow-up rate estimate

‖u(t)‖X ≤ C(p,Ω, u0)(Tmax(u0)− t)−1/(p−1) (5.1)

(where C depends on u0!) is true also for sign-changing solutions and any
p ∈ (1, pS) if Ω = Rn. This follows from a very recent result of Y. Giga, S. Matsui
and S. Sasayama based on the approach in [28]. If p(3n−4) < 3n+8 or u0 ≥ 0 and
p < pS then (5.1) was proved by Y. Giga and R.V. Kohn [19] for both unbounded
and bounded convex domains. On the other hand, it is known that such an esti-
mate fails, in general, for p ≥ pS , see the results of S. Filippas, M.A. Herrero and
J.J.L. Velázquez in [15], [20] and [21]. Concerning universal blow-up rate estimates
for positive solutions in unbounded domains we refer to J. Matos and Ph. Souplet
[24].

(iv) First results concerning universal bounds for global positive solutions of
(1.1) with f(x, u) = |u|p−1u and Ω bounded were obtained by M. Fila, Ph. Souplet,
F. Weissler in [14] and the author in [30].

6 Nonlinear boundary conditions

In this section we study a priori estimates for global solutions of the problem
ut = ∆u− au, x ∈ Ω, t ∈ (0,∞),
uν = |u|q−1u, x ∈ Γ, t ∈ (0,∞),
u(x, 0) = u0(x), x ∈ Ω,

(6.1)

where a > 0, q > 1, Ω is a smoothly bounded domain in Rn and ν denotes the
outer unit normal on the boundary Γ . Since we study only global solutions, the
bounds (1.2) and (1.3) have the form

‖u(t)‖X ≤ C(‖u0‖X), for any t > 0, (6.2)

‖u(t)‖X ≤ C(δ), for any t > δ. (6.3)

The following result is proved in [34].

Theorem 6.1. Consider the problem (6.1). Let X := H1(Ω) and q(n− 2) < n.
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(i) Let Tmax(u0) = ∞. If u0 ≥ 0 or q < q∗, where

q∗ =

{
+∞ if n = 1,
(9n2 − 22n+ 24 + 8

√
4n2 − 10n+ 8)/(3n− 4)2 if n > 1,

then the bound (6.2) is true.
(ii) Assume q(n− 4) < n− 3 if n ≥ 7. Then the bound (6.3) is true for all global

nonnegative solutions of (6.1).

Remarks 6.1. (i) The value qS := n/(n − 2) is the limiting exponent for which
the trace operator maps H1(Ω) into Lq+1(Γ ). Unlike the case of the homogeneous
Dirichlet boundary condition, it is not clear whether the subcriticality condition
q < qS is necessary for the a priori bounds mentioned above.

(ii) The assumptions q < q∗ and q < (n − 3)/(n− 4) for n ≥ 7 seem to be of
technical nature.

(iii) The validity of (1.2) or (1.3) for non-global solutions is open.

7 Nonlocal problems

As already mentioned in the introduction, the estimate (1.2) can be derived for
more general problems than (1.1). For example, in [31] we considered two nonlocal
problems, which were frequently studied from the point of view of blow-up and
global existence in the past decade (see the references in [31]). For both of these
problems we derived the estimate (1.2) and the continuity of the blow-up time.

The first problem has the form

ut −∆u = f(x, u(x, t)) − 1
|Ω|

∫
Ω

f(x, u(x, t)) dx, x ∈ Ω, t > 0,

uν = 0, x ∈ Γ, t > 0,
u(x, 0) = u0(x), x ∈ Ω,

where Ω is a smoothly bounded domain in Rn and f(x, ·) is a superlinear function
(in particular, one can choose f(x, u) = |u|p−1u, pS > p > 1).

The second nonlocal problem has the form

ut −∆u = φ
(∫

Ω

F (u) dx
)
f(u), x ∈ Ω, t > 0,

u = 0, x ∈ Γ, t > 0,
u(x, 0) = u0(x), x ∈ Ω,

where f = F ′, Ω is a smoothly bounded domain in Rn and either

F (u) =
1

p+ 1
|u|p+1, φ(s) = (s+ 1)−α, 1 < p < pS , 0 ≤ α < p− 1

p+ 1
,

or
F (u) = eu, φ(s) = s−q, 0 < q < 1, n = 1.
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8 Problems involving measures

Notice that the assumption (2.3) in Section 2 requires f(·, 0) ∈ L(p2+1)/p2(Ω)
and that even a stronger assumption on the integrability of f(·, 0) is required in
the second part of Theorem 2.1. If f(·, 0) is less regular then we can still expect
similar results as in Theorem 2.1 provided we restrict the range for the exponent
p2. Consider, for example, the model problem

ut −∆u = |u|p−1u+ aµ, x ∈ Ω, t > 0, (8.1)

u = 0, x ∈ Γ, t > 0, (8.2)

u(x, 0) = u0(x), x ∈ Ω, (8.3)

where Ω is a bounded domain in Rn, n ≥ 2, µ is a positive bounded Radon measure
on Ω, a > 0 and 1 < p, p(n−2) < n. The restriction on p is necessary for the local
solvability of (8.1).

It is known (see [3] or [1]) that

a∗ := sup{a > 0 (8.1) has a positive equilibrium} > 0.

Set X := {u ∈ W z
q (Ω) u = 0 on Γ}, where

−n
p
≤ z − n

q
< 2− n, q > 1, z ≥ 0, z != 1/q.

The following result from [29] is restricted to global solutions of (8.1), but we
believe that a complete analogon to Theorem 2.1 can be proved.

Theorem 8.1. Let Ω,n, p, µ, a∗, X be as above and let 0 < a < a∗. Let u be a
global solution of (8.1). Then ‖u(t)‖X ≤ C(‖u0‖X).

Let us be the minimal positive stationary solution of (8.1). Then there exist
stationary solutions u+, u−, ũ of (8.1) such that u+ > us > u− and the function
ũ− us changes sign.

Acknowledgement. The author was supported by VEGA Grant 1/7677/20.
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