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Abstract. We consider face-to-face partitions of bounded polytopes into
convex polytopes in R? for arbitrary d > 1 and examine their colourabil-
ity. In particular, we prove that the chromatic number of any simplicial
partition does not exceed d + 1. Partitions of polyhedra in R? into penta-
hedra and hexahedra are 5- and 6-colourable, respectively. We show that
the above numbers are attainable, i.e., in general, they cannot be reduced.
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1 Introduction

In 1890, P.J. Heawood formulated his famous map-colouring theorem (see [10]),
which determines an attainable upper bound of the chromatic number of maps
on two-dimensional compact orientable surfaces whose genus is positive. The case
of genus 0 (known as the four colour conjecture for planar maps) was for a long
time an open problem and served as a catalyst for graph theory. In 1930, Kasimir
Kuratowski introduced his well-known necessary and sufficient condition for testing
the planarity of a graph, see [14]. (An algorithm for testing the planarity can be
found, e.g., in [17].)

It was not until in 1976 that K. Appel and W. Haken proved with the help
of computers that every planar map is 4-colourable (see [1], [2], [3]). A simpler
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proof, which is also based on the use of computers, is given in [16]. Recall that
the colouring of maps and graphs has a lot of practical applications (storing chem-
ical compounds, designing optimal time-tables, allocating frequencies for mobile
phones, etc.).

Let us consider now a three-dimensional “map”, i.e., a partition of a three-
dimensional bounded region into a finite number of subregions.

Does there exist an analogue of the four colour theorem in R3?

In Figure 1 we see a simple example showing nonconvex three-dimensional sub-
regions each of which touches all the others. Such regions can be modelled by
L-shaped flexible pieces of paper with positive thickness (this can obviously also
be done by polyhedra). The configuration of Figure 1 can be associated with a
graph whose vertices correspond to regions and such that two vertices are joined
by an edge whenever the corresponding regions are adjacent. For n such subregions
we obtain the complete graph K,,, which requires n different colours. It is obvious
that the number of such subregions, and therefore also the number of colours, can
be arbitrarily large (see the last column of Table 1 in Section 4).

Figure 1

In this paper we show that, if we allow only maps with convex subregions, we
might expect that there exists for each d € {1,2,3,...} a fixed finite upper bound
for the “chromatic number” for arbitrarily many d-dimensional subregions. Figure
1 thus illustrates that the assumption of convexity is essential for d > 3. Since
according to [18, p.902], the only convex compact sets that tile the space R are
convex polytopes, we shall from now on consider only subregions that are compact
convex polytopes.

With the terminology of the finite element method in mind, we will call any
compact convex polytope in R%, d = 1,2,3,..., whose interior is nonempty, an
element. Its (d — 1)-dimensional faces will for simplicity be called faces.
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Let 2 C R? be a bounded polytopic domain and denote its boundary by
012. We shall only consider face-to-face partitions of {2 into convex d-dimensional
polytopes (the main reason for this assumption is given in Remark 4.1).

A finite set 7 of elements is said to be a partition of 2 into elements if

n=Jr (1.1)

TeT

if the interiors of any two elements from 7 are disjoint, and if any face of any
element T' € 7 is either a subset of the boundary 02, or a face of another element
in the partition. Two elements are called adjacent if they have a common face.

One of the most important features of the finite element method for solving
three-dimensional boundary value problems on a bounded polyhedral domain {2
is the generation of a partition of {2 (see [12]) into elements. The existence of such
a partition into tetrahedra for an arbitrary bounded polyhedral domain is given
in [11]. The visualization of such a three-dimensional partition into tetrahedra,
pentahedra (pyramids, triangular prisms), hexahedra, etc., is an important and
difficult problem. One way is to paint adjacent elements with different colours.
Also in two-dimensional space, elements are often coloured to emphasize their
positions in the triangulation considered (see, e.g., [1]). We meet a similar problem
in domain decomposition methods, where adjacent subdomains are painted with
different colours to emphasize their positions. Moreover, there are fast iteration
methods that perform calculations on subdomains with the same colour in parallel
processors (see, e.g., [19]).

We now highlight several standard definitions from graph theory. A colouring
of a partition 7 is an assignment of colours to its elements such that no two
adjacent elements have the same colour. An n-colouring of a partition 7 uses n
colours. A partition is said to be n-colourable if there exists a colouring of 7 that
uses n colours or fewer. The chromatic number x(7) is defined as the minimum
n for which 7 has an n-colouring.

So, we stress that a partition 7 is n-chromatic if x(7°) = n, and n-colourable if
X(7) < n. Throughout the paper, colours will for convenience be denoted by the
numbers 1,2,...,n.

One of the aims of this paper is to prove that for any simplicial partition
in R? there exists a (d + 1)-colouring. We start with two-dimensional partitions
into triangles just to introduce the main idea of the proof of the general result,
Theorem 3.3.

2 Colouring triangulations

By a triangulation we mean a (face-to-face) partition of a bounded polygon 2 C R?
into (closed) triangles.

The famous PLTMG program (see [4]) for solving partial differential equations
generates triangulations of {2, which are coloured with 5 different colours such
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that any two adjacent triangles have different colours. According to the four colour
theorem, this number could clearly have been reduced to 4.

Remark 2.1. In contrast to the colouring of a general map, it is very easy to find
an algorithm for a 4-colouring of any triangulation. We can proceed, for instance,
by induction. Assume we have a map (triangulation) with k triangles. Remove
an arbitrary triangle and assign a colouring to the remaining map of £ — 1 trian-
gles. Then add the kth triangle again and colour it differently than its (max. 3)
neighbours.

By Brooks’ theorem (see, e.g., [15]), if G is a graph with maximum degree
n > 3 and if G does not contain the complete graph K, 1, then G is n-colourable.
Proposition 2.2 below is a special case of Brooks’ theorem with n = 3. However, its
proof differs from the one presented in [15] and is constructive, i.e., it can be used
as a colouring algorithm. We show that the number of colours can be reduced to
3 for any triangulation (cf. Figure 2). The key point is the avoidance of colourings
containing a triangle surrounded by three triangles already coloured with three
different colours.

Figure 2

Proposition 2.2. Any triangulation is 3-colourable.

Proof. Let T be a triangulation of a bounded polygon {2 consisting of k triangles
(cf. (1.1)). First, number the triangles inductively as follows. Let M; = (2 and let
1 successively increase from 1 to k. Choose an arbitrary T; € 7 which has at least
one side on the boundary dM; and then set

Mi+1 = M1 \ Tl

We observe that M, = T.

Second, let 7 successively decrease from k to 1. Since each T; has at most two
neighbours with higher indices, we may assign to 7; any colour different from its
at most two neighbours.
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In detail, we define the colour ¢(T;) of the ith triangle T;, for instance, by
¢(T;) = min(B;), (2.1)

where

Bi - {17 2a 3} \ Aia

and A; C {1,2,3} is the set of colours of those adjacent triangles of T; C M, that
were already coloured.

Remark 2.8. The function min in (2.1) can be obviously replaced by max, or in
applications by rnd which (pseudo)randomly chooses an element from the set B;.

Remark 2.4. To any given triangulation we may associate, in a standard way,
a graph whose nodes correspond to triangles and whose edges indicate that two
triangles are adjacent. Since every triangle in the triangulation has at most three
adjacent triangles, the degree of each node is at most 3. In Figure 3 we see
a 4-colourable graph K, whose nodes all have degree 3. By the contrapositive
of Proposition 2.2, this graph cannot correspond to any planar triangulation. Note
that the surface of a ball can be decomposed into four “curved triangles”, by pro-
jecting the regular tetrahedron from its centre of gravity into a circumscribed ball.
The corresponding graph is, indeed, exactly the one given in Figure 3.

Figure 3 Figure 4

Remark 2.5. If some vertex in a triangulation is surrounded by an odd number
of triangles, then the number of colours cannot be 2 (see Figure 4). On the other
hand, standard periodic triangulations (uniform, chevron, criss-cross, union-jack)
in finite-element theory, which yield various superconvergence phenomena [13], are
2 colourable — see Figure 5. This follows from the classical theorem which states
that a graph is 2-colourable if and only if it has no odd-length cycles (see, e.g.,
[7, p-37], [9, p- 127], [20, p. 235]).
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UNIFORM CHEVRON

UNION-JACK CRISS-CROSS

Figure 5

Remark 2.6. There are several theorems on 3-colouring. For instance, according
to the well-known Grotzsch’s theorem (see [8], [9, p. 131]), every planar graph with
fewer than 4 “triangles” is 3-colourable. (Here the word “triangle” has to be un-
derstood in the context of graph theory.) Note that the graph in Figure 3 has
4 “triangles”. It is obvious that Proposition 2.2 does not follow from Grotzsch’s
theorem, since there exist triangulations in which 4 different vertices are sur-
rounded by three triangles (see Figure 2, for example).

3 Colouring polytopic partitions in R¢

In this section we generalize Proposition 2.2 to R4, d = 1,2,3, ..., and to arbitrary
elements (i.e., to compact convex polytopes whose interior is nonempty in R%).
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Remark 3.1. The chromatic number of a planar partition into convex polygons
is, in general, larger than the chromatic number of a triangulation. For instance,
in Figure 6 we see a planar partition whose elements are not all triangles and
whose chromatic number is 4 (the associated graph is in Figure 3). Similarly, for
partitions in R? we need, in general, more colours if the number of faces of each
element is greater than the number of faces of a d-simplex.

Figure 6

Remark 3.2. Assume that the number of faces of each element of a partition 7 in
R? does not exceed a given number f. Clearly,

f>d,

since any d-simplex has d + 1 faces. A simple algorithm for a (f + 1)-colouring of
any such partition is as follows: We assign one of the f + 1 colours to each element
in turn, giving each element a colour not already assigned to any adjacent element.

The next theorem shows that the number of colours can be reduced to f.

Theorem 3.3. Let the number of faces of each polytope of a partition T in R?
not exceed a given number f. Then 7T is f-colourable.

Proof. Let T be a partition with k elements. First, let 7 successively increase from
1 to k. We denote by 77 € 7 any element whose face lies on the boundary of 2,
by T any element whose face lies on the boundary of 2\ T}, by T3 any element
whose face lies on the boundary of 2\ (71 U T%), etc. In other words, T; € T is
any element whose face lies on the boundary 0M; of the open set

1—1
M=\ JT; fori=1,... k.

Jj=1

In particular M; = 2 and M), = T. We see that the boundary 0M; is nonempty
fori=1,... k.

Second, we shall colour elements contained in the set M;, where i successively
decreases from k to 1. We set

c(T;) = min(B;), (3.1)
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where

B ={1,2,....f}\ A

and A; C {1,2,..., f} is the set of colours of those adjacent elements of T; C M;
that were already coloured.

Further, we have to show that B; is nonempty to guarantee that the colour
¢(T;) in (3.1) is well defined. Since T; has at least one face in OM;(# 0), the element
T; has at most f — 1 adjacent elements in the set M;, and thus the cardinality of
the set A; is at most f — 1. Consequently, B; is nonempty and ¢(T}) is correctly
defined.

For a better visualization, elements in three-dimensional partitions will be usu-
ally illustrated in “exploded configurations” in which they do not touch its neigh-
bouring elements.

Theorem 3.4. Any simplicial partition in R? is (d + 1)-colourable and this num-
ber cannot, in general, be reduced.

Proof. Any d-simplex has d + 1 faces Fy, Fs, ..., Fy, Fgy1. Thus the first part of
the theorem follows immediately from Theorem 3.3.

Now we show that there exists a simplicial partition 7 whose chromatic number
is exactly d+1. Let T be an arbitrary d-simplex in R? and let P € T be an arbitrary

interior point (e.g., the center of gravity). Set 7 = {T;}¢!, where

T, =conv(P, F;) fori=1,2,...,d+1,

and where conv denotes the convex hull (see Figure 4 for d = 2 and Figure 7 for
d = 3). Then each T; is also a d-simplex in R? and the chromatic number of T
is exactly d + 1. This is because each T; has d common faces with all remaining
d-simplices T}, j # 4, whose number is d.

Figure 7

A partition in R® consisting only of tetrahedra is called a tetrahedralization.
A special case of Theorem 3.4 for d = 3 can be stated as follows:
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Corollary 3.5 (The four colour theorem for tetrahedra in R3). Any tetra-
hedralization is 4-colourable.

Remark 3.6. Although any tetrahedralization is 4-colourable, the associated graph
is not planar, in general. Thus Corollary 3.5 is not a consequence of the classical
four colour theorem.

Remark 3.7. In Figure 8 we see an example of a uniform tetrahedralization which
is only 2-colourable (cf. Remark 2.5) and whose associated graph is not planar.

Figure 8
A partition in R? into tetrahedra and pentahedra (pyramids, triangular prisms)
is called a pentahedralization.

Theorem 3.8. Any pentahedralization is 5-colourable and this number cannot be
reduced, in general.
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Proof. By Theorem 3.3, the chromatic number of any pentahedralization is at
most 5.

The construction of a pentahedralization 7 whose chromatic number is exact-
ly 5 is sketched in Figure 9 (which represents a three-dimensional analogue of
Figure 6). The pentahedralization 7 consists of a tetrahedron which is surrounded
by 4 pentahedra such that each element touches all others. Therefore, the associ-
ated graph is K5 and the chromatic number of 7 is exactly 5.

Figure 9

A partition in R? all of whose elements (convex polyhedra) have at most 6
faces is called a hexahedralization.

ANz
S

Figure 10

Theorem 3.9. The chromatic number of any hexahedralization is at most 6 and
there exists a hexahedralization whose chromatic number is exactly 6.

Proof. The upper bound 6 is again given by Theorem 3.3. The lower bound 6
comes from the hexahedralization 7 marked in Figure 10. It shows a hexahedron
(on the left), which is decomposed into 6 convex polyhedra (2 pentahedra and
4 hexahedra on the right) such that each one touches all the other polyhedra.
Therefore, the associated graph is K¢ and the chromatic number of 7 is 6.
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Remark 8.10. A partition similar to Figures 6 and 10 in R%, d > 3, can be con-
structed by induction. In this way, we obtain altogether 2d polytopes such that
each one touches all others.

4 Endnotes and open problems

Remark 4.1. Figure 11 illustrates a decomposition of a triangular domain into 4
triangles, which is not face-to-face and whose associated graph is K. This example
shows why we considered only face-to-face partitions. Note that finite element grids
with the so-called hanging nodes require, in general, more colours than conforming
grids (i.e., face-to-face partitions).

Figure 11

Colouring of subdomains can be applied in domain decomposition methods.
When we use nonconforming mixed elements (see, e.g., [0]), which have no degrees
of freedom at vertices (and edges for d = 3), then subdomains which have no
common face, have no common degree of freedom. This enables us to compute
the finite element solution on subdomains of the same colour simultaneously on
parallel processors (cf. [19]).

Remark 4.2. We can prove, in the same way as Proposition 2.2, that any “trian-
gulation” of the Mobius strip is 3-colourable.

Remark 4.8. Analogously to Remark 2.1, we can prove that the chromatic number
of any “triangulation” of a torus (or a two-dimensional surface with a positive
genus) is at most 4. The next example illustrates that this number cannot be
reduced, in general. Consider a triangulation of a flexible piece of paper ABC'D
as marked in Figure 12. We first glue up the segment AB with DC, and then
AD with BC to obtain a triangulation of a torus whose associated graph is Kj.
Let us still note that the surface of every toroidal polyhedron consisting of convex
polygons is 6-colourable (see [5]).

D C

Figure 12
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Remark 4.4. Standard finite elements used for solving three-dimensional problems
have at most 6 faces (cf. Theorem 3.9). Consider now partitions in R¢, where each
element can have an arbitrary number of faces. In Table 1 we see the maximum
chromatic numbers for any d. The numbers in the second column follow from
Theorem 3.4. The symbol 7 in the third column indicates that we know only a lower
bound for the maximum chromatic number (see Theorem 3.9 and Remark 3.10).
The upper bound of the maximum chromatic number is known only for d < 2
(cf. Figure 6). Finally, the last column corresponds to arbitrary regions, i.e., to
connected domains that are nonconvex, in general (cf. Figure 1).

dimension |simplices |convex polytopes |arbitrary regions
1 2 2 2

2 3 4 4

3 4 67 00

d d+1 2d 7 00

Table 1. Maximum chromatic numbers for arbitrary partitions R%. The symbol oo
means that the chromatic number can be arbitrarily large.

Remark 4.5. The numbers in the above table hold for infinite partitions of un-
bounded domains as well.

Conjecture 4.6. Any partition of a polyhedron in R3 is 6-colourable.
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