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1 Introduction

We consider the following boundary value problem

N∑
i=1

∂

∂xi

(
∂u

∂xi

)∗p
+ f(u,

∣∣gradp u
∣∣
p
) = 0 in Bp, (1.bog)

u = 0 on ∂Bp, (2.bog)

where 0 < p <∞ and the function u
∗
p is defined as follows:

u
∗
p = |u|p−1 u,

and the domain Bp ∈ RN is an open unit “ball” centered at the origin and ∂Bp

means the boundary of the domain Bp. In (1.bog) gradp u denotes the expression

gradp u = (u
∗
p
x1

, u
∗
p
x2

, .., u
∗
p
xN

), u = u(x1, x2, . . . , xN )

and |(x1, x2, . . . , xN )|p =
(

N∑
i=1

|xi|
1
p +1

) p
p+1

.

If p = 1, the operator
N∑

i=1

∂
∂xi

(
∂u
∂xi

)∗p
in the equation (1.bog) is reduced to ∆u.

This is the final form of the paper.
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For the problem (1.bog)–(2.bog) we shall define the distance ρ between the point and
the origin in RN as follows:

ρ
1
p +1 =

N∑
i=1

|xi|
1
p +1 . (3.bog)

In the case ρ = 1 the equation (3.bog) gives the equation of the unit “ball” Bp

in RN . We mention that the curve ρ = 1 in R2 is a central symmetric convex
curve which plays the same role in the case of nonlinear differential equation (1.bog)
as the unit circle in the case of linear (p = 1) partial differential equation.

For the “ball” Bp we introduce now instead of rectangular coordinates x1, x2,
x3, . . . , xN a new type of polar coordinates ρ, ϕ1, . . . , ϕN−1 as follows

x1 = ρ

N−1∏
i=1

[S′(ϕi)] ,

xk = ρ [S(ϕk−1)]
N−1∏
i=k

[S′(ϕi)] if 1 < k ≤ N,

(4.bog)

where S = S(ϕi), 1 < i ≤ N − 1 is the generalized sine function given by
Á. Elbert [6]. The Pythagorean relation for this generalized sine function has
the form

|S|
1

p+1 + |S′|
1

p+1 = 1, where S′ = dS(ϕ)
dϕ .

The unit “ball” Bp in RN is defined by

Bp =
{

(x1, x2, . . . , xN ) :
N∑

i=1

|xi|
1
p +1 ≤ 1

}
, 0 < p <∞.

When we study the radially symmetric solution u(x) = ν(ρ) of the nonlinear
boundary value problem (1.bog)–(2.bog) the nonlinear partial differential equation (1.bog) is
reduced to the following nonlinear ordinary differential equation (5.bog)

∂

∂ρ

(
∂ν

∂ρ

)∗p
+

N − 1
ρ

(
∂ν

∂ρ

)∗p
+ f(ν, |ν′|) = 0, ρ ∈ (0, 1) , (5.bog)

where f(u,
∣∣gradp u

∣∣
p
) = f(ν, |ν′|) since

∣∣gradp u
∣∣
p

= |ν′|
p2

p+1 . We note that the
equation (5.bog) can be written also in the form

(ρN−1ν′
∗
p(ρ))′ + ρN−1f(ν, |ν′|) = 0, ρ ∈ (0, 1) .

Instead of the boundary condition (2.bog) we shall consider the conditions

ν(1) = 0, (6.bog)



On the Symmetric Solutions 55

ν′(0) = 0. (7.bog)

Now let us take the boundary value problem of another nonlinear partial
differential equation instead of (1.bog)–(2.bog)

N∑
i=1

∂

∂xi

[
|∇u|p−1∇u

]
+ f(u, |grad u|) = 0 in B, (8.bog)

u = 0 on ∂B, (9.bog)

where the unit ball B in RN is defined by

B =
{

(x1, x2, . . . , xN ) :
N∑

i=1

x2
i ≤ 1

}
,

as it is usual in the Euclidean metric and |grad u| =
(

N∑
i=1

u2
xi

) 1
2

(p = 1). The

expression

N∑
i=1

∂

∂xi

[
|∇u|p−1∇u

]
in (8.bog) is used to call p-Laplacian.This operator appears in many contexts in
physics: non-Newtonian fluids, reaction-diffusion problems, non-linear elasticity,
and glaceology, just to mention a few applications( see [3], [9], [10], [11], [12]). If
p = 1 the equation (8.bog) is also reduced to the semilinear problem

∆u + f(u, |grad u|) = 0,

the existence of these problems are investigated in [1], [2], [7].The radially sym-
metric solutions of the Dirichlet problem of

∆u + f(u) = 0

were examined by Gidas, Wei-Ming Ni, and Nirenberg for the ball B [8]. If
p > 0 then, applying the usual spherical transformation, the radially symmetric
solutions of equation (8.bog) has to satisfy formally the same equation as (5.bog). So, if
we examine the solutions of (5.bog) we get results on the radially symmetric solutions
both for the nonlinear partial differential equation (1.bog) in the “ball” Bp and also
for the nonlinear partial differential equation (8.bog) in the Euclidean ball B. Here
our aim is to show existence and uniqueness results of symmetric solutions for
the problem

∂

∂ρ

(
∂ν

∂ρ

)∗p
+

N − 1
ρ

(
∂ν

∂ρ

)∗p
+ eλν+κ|ν′| = 0, ρ ∈ (0, 1) ,

ν(1) = 0, ν′(0) = 0,
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where λ, κ are negative real numbers. In the case p = 1 the existence and
uniqueness results of the problem

∂

∂ρ

(
∂ν

∂ρ

)
+

N − 1
ρ

(
∂ν

∂ρ

)
+ eλν+κ|ν′| = 0, ρ ∈ (0, 1) ,

ν(1) = 0, ν′(0) = 0,

are established in [4].

2 Results

Let us consider the following boundary value problem

∂

∂ρ

(
∂ν

∂ρ

)∗p
+

N − 1
ρ

(
∂ν

∂ρ

)∗p
+ eλν+κ|ν′| = 0, ρ ∈ (0, 1)

ν(1) = a, a ∈ R+, ν′(0) = 0.

(10.bog)

We shall say that the function is the positive solution of problem (10.bog) if

i) ν (ρ) is continuous on [0, 1] and ν (ρ) > 0 in the interval (0, 1];
ii) ν′ (ρ) exists and is continuous, moreover ν′ (ρ) ≤ 0 in the interval [0, 1];
iii) ν (ρ) satisfies the boundary conditions: ν (1) = a, for a ≥ 0, ν′ (0) = 0;
iv) ν′′ (ρ) exists almost everywhere and locally Lebesgue integrable in the inter-

val [0, 1];
v) ν (ρ) satisfies the differential equation

∂

∂ρ

(
∂ν

∂ρ

)∗p
+

N − 1
ρ

(
∂ν

∂ρ

)∗p
+ eλν+κ|ν′| = 0, ρ ∈ (0, 1) .

Theorem 1. If a ≥ 0 then the boundary value problem (10.bog) has at most one
positive radial solution.

Proof. Let us denote by ν1 (ρ) and ν2 (ρ) two different positive solutions to the
boundary value problem (10.bog). Without loss of generality we may suppose, that
there exists a point ρ = γ, γ ∈ [0, 1) such that ν1 (ρ) ≥ ν2 (ρ). If ν1 (ρ) −
ν2 (ρ) < 0 in the interval [0, 1) then we change the notations of ν1 (ρ) and
ν2 (ρ) for the opposite. Let us denote by δ ∈ (γ, 1], the first zero of the function
ν1 (ρ)− ν2 (ρ) which lays to the right from γ. By the Lagrange’s theorem there
exists β ∈ (γ, δ) for which ν′1 (β)− ν′2 (β) < 0 and ν1 (β)− ν2 (β) > 0. We shall
denote by α ∈ [0, β) the zero of the function ν′1 (ρ) − ν′2 (ρ). If there are more
zeroes α1, α2, . . . , αk of ν′1 (ρ) − ν′2 (ρ) in the interval [0, β) then let us take the
notation α = max(α1, α2, . . . , αk).

In this case we can summarize that ν1 (ρ)−ν2 (ρ) > 0 and ν′1 (ρ)−ν′2 (ρ) < 0,
ρ ∈ (α, β], ν′1 (α)− ν′2 (α) = 0.
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Since the functions ν1 (ρ) and ν2 (ρ) satisfy the nonlinear differential equation
in (10.bog) therefore substituting them into the differential equation and subtracting
the two equations we get the equation

[ρN−1(ν′
∗
p

1 − ν′
∗
p

2 )]′ + ρN−1[eλν1+κ|ν′1| − eλν2+κ|ν′2|] = 0. (11.bog)

We introduce the following notations

J(ρ) = ν
∗
p
1 (ρ)− ν

∗
p
2 (ρ) ,

K(ρ) = ν′
∗
p

1 (ρ)− ν′
∗
p

2 (ρ) ,

moreover J(ρ) and K(ρ) have the properties

J(1) = 0,

J(γ) > 0,

J(ρ) > 0, ρ ∈ (α, β],

K(0) = 0,

K(β) < 0,

K(α) = 0,

K(ρ) < 0, ρ ∈ (α, β].

(12.bog)

Rearranging the differential equation (11.bog) we obtain[
ρN−1K(ρ)

]′
+ ρN−1K(ρ)A(ρ) − ρN−1J(ρ)B(ρ) = 0 ,

where the expressions A(ρ) and B(ρ) have the forms

A(ρ) =
eλν1+κ|ν′1| − eλν1+κ|ν′2|

ν′
∗
p

1 (ρ)− ν′
∗
p

2 (ρ)
,

B(ρ) =
eλν2+κ|ν′2| − eλν1+κ|ν′2|

ν
∗
p
1 (ρ)− ν

∗
p
2 (ρ)

.

Using the properties of the function eλν+κ|ν′| we get that A(ρ) ≥ 0 and
B(ρ) ≥ 0 when ρ ∈ (α, β]. Thus from the equation (11.bog) we obtain the inequality

[
ρN−1K(ρ)

]′
+ ρN−1K(ρ)

eλν1+κ|ν′1| − eλν1+κ|ν′2|

ν′
∗
p

1 (ρ)− ν′
∗
p

2 (ρ)
≥ 0 , ρ ∈ (α, β]. (13.bog)

If we multiply the inequality in (13.bog) by the expression

exp

{
−

∫ b

ρ

eta
eλν1+κ|ν′1| − eλν1+κ|ν′2|

ν′
∗
p

1 (τ)− ν′
∗
p

2 (τ)
dτ

}
,

and take the integral on the interval [δ, β] where δ ∈ (α, β) we get the inequality

βN−1K(β)− δN−1K(δ) exp

{
−

∫ γ

δ

eλν1+κ|ν′1| − eλν1+κ|ν′2|

ν′
∗
p

1 (τ)− ν′
∗
p

2 (τ)
dτ

}
≥ 0.
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If we take δ → α then we get that

K(β) ≥ 0,

since K(α) = 0. This is contradiction with (12.bog).

In the next theorem we establish the existence result:

Theorem 2. If a ≥ 0 then the boundary value problem (10.bog) has a unique posi-
tive solution.

In the following we need some subsidiary statements.

Lemma 3. If a ≥ 0 then there is a positive solution to problem (10.bog).

Proof. Let us define the mappings

(Φµ) (t) = a +
∫ 1

t

µ(τ)dτ,

(Ψµ) (t) =
[∫ t

0

(τ

t

)N−1

eλ(Φµ)(τ)+κµ(τ,a)dτ

] 1
p

,

H =
{

µ (τ, a) ∈ C[0, 1), 0 ≤ µ (τ, a) ≤
(

eλa

N

) 1
p

, t ∈ (0, 1) , µ (0, a) = 0
}
.

The functions which belong to the set ΦH are uniformly bounded and equicon-
tinuous functions therefore H is compact. Since every Cauchy sequence being
contained in the set H converges in H then H is closed. Thus the set H is
bounded, convex, closed and compact in the Banach space C[0, 1).

The mapping Ψ is a continuous mapping from H to H . Applying the Schauder
fixed point theorem the mapping Ψ has a fixed point.

Using notation µ (ρ, a) = −ν′ (ρ, a) the positive solution to problem (10.bog) has
the form

ν (t, a) = a +
∫ 1

t

µ(τ)dτ = a +
∫ 1

t

[∫ τ

0

(ρ

τ

)N−1

eλν(ρ,a)+κµ(ρ,a)dρ

] 1
p

dτ. (14.bog)

Lemma 4. Let ν (t, a) be the unique positive solution to the problem (10.bog). If
0 ≤ a2 < a1, then ν (t, a1) ≥ ν (t, a2) and ν′ (t, a1) ≥ ν′ (t, a2) for all t ∈ [0, 1).

Proof. Let ν (t, a1) and ν (t, a2) be the unique positive solution to the problem
(10.bog) for a1and a2, respectively. Let us take the notation

j(t) = ν
∗
p (t, a1)− ν

∗
p (t, a2) and k(t) = ν′

∗
p (t, a1)− ν′

∗
p (t, a2) .

Clearly j(1) = a
∗
p
1 − a

∗
p
2 > 0 and k(0) = 0. Hence there exists at least one point

t = α, α ∈ [0, 1) such that k(α) = 0 and j(t) > 0 in the interval (α, 1]. If
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there are more values of α (α1, α2, . . . , αk) for which k(α) = 0 in the interval
[0, 1) then let us take the notation α = max(α1, α2, . . . , αk). We may assume that
there exists a point β ∈ [α, 1) where ν (t, a1) > ν (t, a2) and ν′ (t, a1) < ν′ (t, a2),
that is j(t) > 0, and k(t) < 0 in the interval (α, β]. In an analogous way as in
the proof of Theorem 1 one can obtain that k(β) ≥ 0. It is contradiction since
we supposed that k(β) < 0.

The inequality ν (t, a1) ≥ ν (t, a2) we get in a similar way as in the proof of
Theorem 1.

Proof of Theorem 2. When a → 0 we get that ν (t, a) and ν′ (t, a) converges
uniformly to ν (t, 0) and ν′ (t, 0) in the interval [0, 1], respectively. Taking a→ 0
in the expression (14.bog) we shall get the positive solution to the problem

∂

∂ρ

(
∂ν

∂ρ

)∗p
+

N − 1
ρ

(
∂ν

∂ρ

)∗p
+ eλν+κ|ν′| = 0, ρ ∈ (0, 1) ,

ν(1) = 0, ν′(0) = 0,

in the following form

ν(t, 0) =
∫ 1

t

[∫ τ

0

(ρ

τ

)N−1

eλν(ρ,0)−κν′(ρ,0)dρ

] 1
p

dτ.

Supported by the Grant No. OTKA 019095 (Hungary).

References

[1] F. V. Atkinson, L.A. Peletier, Ground states of ∆u = f(u) and the Emden-Fowler
equation, Archs. Ration. Mech. Analysis, 93 (1986), 103–107.

[2] J. V. Baxley, Some singular nonlinear boundary value problems, SIAM J. Math.
Analysis, 22 (1991), 463–479.

[3] T. Bhattacharya, Radial symmetry of the first eigenfunction for the p-Laplacian
in the ball, Proc. of the Amer. Math. Soc., 104 (1988), 169–174.

[4] G. Bognar, On the radially symmetric solutions to a nonlinear PDE, Publ. Univ.
of Miskolc, Series D. Natural Sciences. 36 No.2. Mathematics (1996), 13–20.

[5] G. Bognar, On the radial symmetric solutions of a nonlinear partial differential
equation, Publ. Univ. of Miskolc, Series D. Natural Sciences. 36 No.1. Mathe-
matics (1995), 13–22.
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