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Abstract. By means of the super-sub-solutions method from [3], the
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1 Introduction

Let f ∈ C1([0,∞); R+) with f(r) > 0 ∀r ≥ 0 and f(r) ' r−θ at ∞ for some
θ > 0. For some a > 1 and p ∈ (1, 2], assume that

f) ∃b ∈ (0, a + 1− p]; for w(t) := (1 + t)−b/(p−1) , some γ > 0 and

ψ(r) := f(r)w(r)−γ ,

∫ ∞
0

sb+p−1ψ(s)ds <∞.

In this note, we investigate the existence of positive and decreasing solutions
u ∈ C2 := C2([0,∞)) of

Qu ≡(ra|u′|p−2u′)′ + raF ν
q (r, u)+ = 0, u′(0) = 0,

where q > 0, Fν
q(r, u) := f(r)u−γ − νuq, ν ≥ 0,

or Fν
q(r, u) := νf(r)u−γ + uq, ν > 0.

 (Q.tadd)

For a = n − 1, n ∈ N, such u is a radial solution in Rn of the p-Laplacian
equations div(|∇u|p−2∇u) + F ν

q (|x|, u)+ = 0.
For a positive and decreasing function φ, define

Φ(r) = Tφ(r) := φ(0)−
∫ r

0

dt

{∫ t

0

(s/t)aF ν
q (s, φ)+ds

}1/(p−1)

.

This is the final form of the paper.
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Given such a function φ, the following result from [3] will be used:

assume that
∫ ∞

0

(1 + sp−1)F ν
q (s, φ)+ds <∞; (φ.tadd)

if ∀r ≥ 0 Qφ ≥ 0 (≤ 0 respectively) and F ν
q (r, .) is positive and decreasing

in [Φ(r), φ(r)] ( [φ(r), Φ(r)] respect.), then (Q.tadd) has a decreasing solution u ∈
C2([0,∞)) such that Φ ≤ u ≤ φ (φ ≤ u ≤ Φ respect.) in [0,∞).
The main results are the following:

Theorem 1 (Uniqueness). Assume that ∀r ≥ 0 t 7→ F ν
q (r, t)+ is decreasing

in t > 0. Then

a) ∀b ≥ 0, if it exists the decreasing solution ub ∈ C1 of (Q.tadd) such that
lim∞ ub = b is unique;

b) ∀R > 0, if it exists the decreasing solution u ∈ C1([0, R)) of (Q.tadd) such that
u(R) = 0 is unique.

Theorem 2 (Existence). Suppose that for some γ > 0 and b ∈ (0, a + 1− p]∫ ∞
0

sb+p−1f(s)(1 + s)bγ/(p−1) <∞. (1.tadd)

1) Then, the equation

(ra|u′|p−2u′)′ + raf(r)u(r)−γ = 0 (2.tadd)

has a unique positive and decreasing solution u ∈ C2 := C2([0,∞)) such
that

u ≤ C r−b/(p−1) (u ' r−b/(p−1) if b = a + 1− p) at ∞;

2) if also q > max{p(p− 1)/b,−γ + θ(p− 1)/b},
i) there is ν0 > 0 depending only on f such that for ν ∈ (0, ν0 ]

(ra|v′|p−2v′)′ + ra{f(r)v(r)−γ − νv(r)q}+ = 0 (3.tadd)

has a unique decreasing and positive solution v ∈ C2; if in addition
q > (p− 1)(b + p)/b, then v(r) ≤ C r−b/(p−1) at ∞;

ii) there is ν1 > 0 depending only on f such that ∀ν > ν1

(ra|U ′|p−2U ′)′ + ra{νf(r)U−γ + U q} = 0 (4.tadd)

has a positive and decreasing solution U such that U ≤ C r−b/(p−1)

at ∞.

2 Preliminaries

Definitions and notations:
µ := 1/(p − 1); m := µb, b ∈ (0, a + 1 − p]; w(r) := (1 + r)−m;

∫
v(s) :=∫

v(s)ds; ψ(r) := f(r)w(r)−γ ; t∗ := max{1, t} and Dp
au := (ra|u′|p−2u′)′.
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2.1 Properties of some integrals

Define for t ≥ 0

J(t) :=
∫ ∞

t

(∫ r

0

(s

r

)a

ψ(s)
)µ

. (5.tadd)

We normalized f so that

Ψ1 :=
∫ 1

0

(∫ r

0

ψ

)µ

+
1
m

(∫ ∞
0

sb+p−1ψ

)µ

≤ 1. (6.tadd)

Lemma 3. If∫ ∞
0

sb+p−1ψ(s) <∞ or 0 < γ < (p− 1)
(θ − b− p)

b
, (7.tadd)

where b ∈ (0, a + 1− p], then ∀t ≥ 0

(p− 1)
a + 1− p

(∫ 1

0

saψ

)µ

≤ J(t) ≤ Ψ1 t−m
∗ ; (8.tadd)

b = a + 1− p =⇒ mJ(t) ≥ t−m

{∫ 1

0

saψ(s)ds

}µ

∀t > 1; (9.tadd)

|J(t)′| ≤
{(∫ 1

0

ψ

)µ

+
(∫ ∞

0

sb+p−1ψ

)µ}
t−m−1
∗ ; (10.tadd)

|J(t)′′| ≤ (a + 1)µ|J(t)′|(µ−1)/µ|ψ|∞, (11.tadd)

where (7.tadd) is not necessary for the lower bound in (8.tadd).

Proof. We have

J(t) =
∫ ∞

t

r−m−1

{
r−a+b+p−1

∫ r

0

saψ

}µ

≤
∫ ∞

t

r−m−1

(∫ ∞
0

sb+p−1ψ

)µ

on one hand and

J(t) ≤
∫ 1

0

(∫ r

0

ψ

)µ

+
∫ ∞

1

r−m−1

(∫ ∞
0

sb+p−1ψ

)µ

on the other hand; the RHS of (8.tadd) then follows from integrations by parts . For
t ≤ 1,

J(t) ≥
∫ ∞

1

(
r−a

∫ r

0

saψ

)µ

≥
(∫ 1

0

saψ

)µ ∫ ∞
0

r−aµdr

and for t > 1 ,

J(t) ≥
(∫ 1

0

saψ

)µ ∫ ∞
t

r−aµdr.
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We thus get the LHS of (8.tadd).
If b = a + 1− p, J(t) ≥ (

∫ 1

0
saψ)µ

∫∞
t

r−m−1dr and (9.tadd) follows.
For t > 1, as a > b + p− 1,

0 ≤ −J(t)′ ≤
(

t−b+1−p

∫ t

0

sb+p−1ψ

)µ

≤ t−m−1

(∫ ∞
0

sb+p−1ψ

)µ

.

For t ≤ 1 |J(t)′| ≤ (
∫ 1

0
ψ)µ and (10.tadd) is obtained.

For (11.tadd),

J(r)′′ = −µ

{
r−a

∫ r

0

saψ

}µ−1{
−ar−a−1

∫ r

0

saψ(s) + ψ(r)
}

hence from

|J(r)′′| ≤ µ(a + 1)|ψ|∞
(

r−a

∫ ∞
0

saψ

)µ−1

(11.tadd) follows.

Lemma 4. Under the assumptions (6.tadd)–(7.tadd)

(ra|U ′|p−2U ′)′ + raψ(r) = 0; r ≥ 0 (12.tadd)

has a decreasing and positive solution U ∈ C2([0,∞)) such that

U(r) ≤ (1 + r)−b/(p−1) ∀r ≥ 0. (13.tadd)

Proof. It is easy to verify that U = J where J is defined in (5.tadd) satisfies (12.tadd).
Then (8.tadd)–(11.tadd) complete the proof.

2.2 Proof of Theorem 1

Let u and v be two such solutions with u > v > 0 in some [0, R).
As they are decreasing, from the equations, in [0, R)

{ra(|v′|p−1 − |u′|p−1)}′ = ra{F ν
q (r, v)− F ν

q (r, u)} > 0

with ra(|v′|p−1 − |u′|p−1)|r=0 = 0, whence |v′| > |u′| or v′ < u′ ≤ 0 in (0, R).
This implies that u(r)− v(r) > u(0)− v(0) whenever v(r) > 0.

2.3 Proof of Theorem 2

In the lights of the super-sub-solutions methods established in [3], it suffices for
each case to find an appropriate sub- or supersolution of the problem.
1) The function U in Lemma 4 is a supersolution of (2.tadd) as

ψ(r) = f(r)(1 + r)bγ/(p−1) ≤ f(r)U(r)−γ .
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The estimate for the case b = a + 1− p follows from (9.tadd).
2) i) The solution v, say, obtained in 1) satisfies v(r) ≤ (1 + r)−b/(p−1).

F (r, v) = vq{f(r)v−(γ+q) − ν} ≥ vq{f(r)(1 + r)b(γ+q)/(p−1) − ν}.

So, as f(r) > 0 everywhere, there is ν0 := infr>0[f(r)(1 + r)b(q+γ)/(p−1)] such
that if ν ≤ ν0, then F (r, v) := f(r)v−γ − νvq ≥ 0 and ∂vF (r, v) ≤ 0.
Then v is a suitable subsolution of (3.tadd) as the condition (1.tadd) of Theorem 5 of [3]
is guaranteed by q > max{p(p− 1)/b,−γ + θ(p− 1)/b (see (φ.tadd) ).
If in addition q > (b + p)(p− 1)/b, then V (r) :=

∫∞
r

(
∫ t

0
(s/t)aF (s, v)ds)µdt is a

supersolution of the equation with rb/(p−1)V (r) bounded.
ii) For G(r, φ) := νf(r)φ−γ + φq,

∂φG(r, φ) = qφ−1−γ{φq+γ − γνf(r)/q} := qΦ−1−γΨν(r),

where Ψν(r) := (1 + r)−b(γ+q)/(p−1) − νγf(r)/q.
If q > θ(p − 1)/b − γ and φ < (1 + r)−b/(p−1), then for some large R > 0
there is Ψν(r) < 0; in this case there is ν1 := sup[0,R] q{γ(1+ r)b(γ+q)/(p−1)f(r)}
such that ν > ν1 implies that G is decreasing in such positive φ. The solution v
obtained in 1) is then a suitable supersolution of (4.tadd).

This work is dedicated to my late uncle Toam Chatue J.B., ( † on 14/08/1997).
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