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Abstract. In this note, we establish existence theorems for positive and
classical solutions of the problem (Ea.tad) below using a barrier method.
Moreover we show that the existence of such solutions can be obtained
from the sole existence of a supersolution or of a subsolution of the
equation.
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1 Introduction

Let f ∈ C1([0,∞)× (0,∞)) be such that

f1) ∀r ≥ 0, f(r, .)+ := max{0, f(r, .)} ∈ C1((0,∞)) and non increasing;
f2) ∀S, T > θ > 0, if f(r, S), f(r, T ) > 0 then ∃k1(θ), k2(θ) > 0 such that
|f(r, T )− f(r, S)| ≤ k1(θ)f2(r, k2(θ) )|T − S|; f2(., S) := |∂f(., S)/∂S|.

For a > 1, p ∈ (1, 2] and Dp
au := (ra|u′|p−2u′)′, consider in R+ the problem

Ea(u) := Dp
au + raf(r, u)+ = 0; u(0) > 0; u′(0) = 0. (Ea.tad)

Definition 1. Let M be a positive number, finite or not. Let IM := [0, M) and
w, v ∈ C1(IM ) be piecewise C2 be non increasing.

1) v will be said to be a supersolution (subsolution) of the problem (Ea.tad) in
IM if Ea(v) ≥ 0 (Ea(v) ≤ 0) almost everywhere in IM ;

2) w and v will be said to be Ea-compatible in IM if
i) Ea(w) ≤ 0 ≤ Ea(v) a.e. in IM ,
ii) 0 < w ≤ v and w′ ≤ v′ ≤ 0 in IM ,
iii) ∀r ∈ IM , f(r, .) > 0 and decreasing in [w(r), v(r)].

This is the final form of the paper.
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For a non-increasing positive φ ∈ C1(IM ) define

Φ(r) = Tφ(r) := φ(0)−
∫ r

0

dt

{∫ t

0

(s/t)af(s, φ)ds

}1/(p−1)

. (T)

Definition 2. A non increasing (respectively decreasing) positive supersolution
v (resp. subsolution w) of (Ea.tad) in IM will be said to be Ea-compatible if Tv and
v (resp. w and Tw) are Ea-compatible in IM .

In the sequel super- and subsolutions are supposed to be C1 and piecewise C2

in the corresponding domains. Also for ease writing, under the integral signs we
will write f(., .) for f(., .)+. The main results are the following:

Theorem 3. If there are w and v which are Ea-compatible in IM , then (Ea.tad)
has a solution u ∈ C2(IM ) such that w ≤ u ≤ v in IM .

Theorem 4. Assume that there is a non increasing (resp. decreasing) positive
supersolution v (resp. subsolution w) which is Ea-compatible in IM .
Then (Ea.tad) has a decreasing solution u ∈ C2(IM ) such that Tv ≤ u ≤ v (resp.
w ≤ u ≤ Tw) in IM .

Theorem 5. 1) Assume that there are w and v which are Ea-compatible in
[0,∞) such that ∫ ∞

0

{1 + sp−1}f(s, w)ds <∞. (1.tad)

Then (Ea.tad) has a solution u ∈ C2([0,∞)) such that w ≤ u ≤ v in [0,∞).
2) Assume that there is a non increasing (resp. decreasing) positive supersolution
v (resp. subsolution w) Ea-compatible in R+.
Then (Ea.tad) has a positive decreasing solution u ∈ C2([0,∞)) such that it holds
Tv ≤ u ≤ v (resp. w ≤ u ≤ Tw) in [0,∞).

Theorem 6. 1) Assume that there are w and v which are Ea-compatible in
[0,∞) with ∫ ∞

0

{sf(s, w)}1/(p−1) <∞. (2.tad)

Then (Ea.tad) has a solution u ∈ C2([0,∞)) such that w ≤ u ≤ v.
2) Assume that there is a non increasing positive supersolution v of (Ea.tad) in
[0,∞) such that

i) V (r) = Iv(r) :=
∫∞

r dt{
∫ t

0 (s/t)af(s, v)ds}1/(p−1) satisfies (2.tad);
ii) V and v are Ea-compatible in [0,∞).

Then (Ea.tad) has such a solution u with V ≤ u ≤ v.
Similarily if there is a decreasing positive subsolution w such that w and Iw are
Ea-compatible in [0,∞) and which satisfies (2.tad), then (Ea.tad) has such a solution u
with w ≤ u ≤W := Iw.
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2 Proof of the theorems

2.1 Preliminaries

Let Cf (M) := {φ ∈ C(IM ) | f(r, φ) > 0 ∀r ∈ IM} and b := 1/(p− 1). For some
A = φ(0), define on Cf (M) the operator T by

Φ(r) := Tφ(r) := A−
∫ r

0

dt

{∫ t

0

(s/t)af(s, φ)ds

}b

. (3.tad)

Then Dp
aΦ + raf(r, φ) = 0 in IM, Φ(0) = A, Φ′(0) = 0 and Φ′ ≤ 0.

From [5], as b ≥ 1, ∀t ≤M , with s∗ := max{1, s},

|Φ(t)| ≤ p− 1
a + 1− p

{∫ t

0

sp−1
∗ f(s, φ)ds

}b

; (4.tad)

|Φ′(t)| ≤ 1
t∗

{∫ t

0

sp−1
∗ f(s, φ)ds

}b

. (5.tad)

As Φ′′(t) = −b{
∫ t

0 (s/t)af(s, φ)ds}b−1{f(t, φ)− a
t

∫ t

0 (s/t)af(s, φ)ds},

|Φ′′(t)| ≤ b

{∫ t

0

(s/t)af(s, φ)ds

}b−1{
f(t, φ) +

a

t

∫ t

0

f(s, φ)ds

}
. (6.tad)

Thus TCf(M) ⊂ C2(IM ) and for φ ∈ Cf (M),

|Tφ|C2([0,M ] ≤ C2
M (φ) := A +

a

a + 1− p

{∫ M

0

sp−1
∗ f(s, φ)ds

}b

+

+ b(a + 1)|f(., φ)|C(IM )

{∫ M

0

f(s, φ)ds

}b−1

. (7.tad)

Lemma 7. Let w, v be those in Theorem 3 and define

EM (w, v) := {φ ∈ C1(IM ) | w ≤ φ ≤ v; w′ ≤ φ′ ≤ v′ inIM}.

Then with A ∈ [w(0), v(0)], TEM (w, v) ⊂ EM (w, v) ∩ C2(IM ) .

Proof. Let V := Tv and W := Tw; then in IM

w ≤W ≤ V ≤ v and w′ ≤W ′ ≤ V ′ ≤ v′.

In fact, as V ′, v′ ≤ 0, Dp
aV −Dp

av = (ra{|v′|p−1−|V ′|p−1})′ ≤ 0 whence |v′|p−1 ≤
|V ′|p−1 or V ′ ≤ v′ ≤ 0. Because V (0) ≤ v(0) we then have V ≤ v in IM .
Similarily we have w′ ≤ W ′ and w ≤ W in IM . Also in the same way, w ≤ v
and W (0) = V (0) imply that W ′ ≤ V ′ and W ≤ V . If φ ∈ EM (w, v) then
f(r, v) ≤ f(r, φ) ≤ f(r, w) in IM , hence Φ := Tφ satisfies

W ≤ Φ ≤ V and W ′ ≤ Φ′ ≤ V ′.



272 Tadie

Corollary 8. Let v (w) be a non increasing (decreasing) positive supersolution
(subsolution) which is Ea-compatible in IM .
Then TEM (v) ⊂ EM (v) ∩ C2(IM ), where EM (v) ≡ EM (Tv, v) (TEM (w) ⊂
EM (w) ∩ C2(IM ), where EM (w) ≡ EM (w, TW )).

Proof. In the light of Lemma 7, it is enough to notice that V := Tv (W := Tw)
is a subsolution (supersolution) of (Ea.tad) in IM .

Lemma 9. Let w and v be as in Theorem 3. Then, T : EM (w, v) −→ C1(IM )
is continuous and TEM (w, v) is equicontinuous in C1(IM ).

Proof. The continuity follows from the fact that for φ, ψ ∈ EM (w, v) and | |r
denoting the norm in C([0, r]),

|(|(Tφ)′|p−1 − |(Tψ)′|p−1)(t)| ≤ k1(θ)|φ − ψ|r
{∫ r

0

(s/r)af2(s, k2(θ))
}

,

where φ, ψ > θ > 0 in IM is assumed (see f2) ) and a similar bound for |Tφ−Tψ|
is obtained easily. The equicontinuity in C1 follows from (7.tad).

2.2 Proof of Theorems 3 and 4

Lemma 7 and Lemma 9 imply that T has a fixed point in EM (w, v) by the
Schauder-Tychonoff’s fixed point theorem [2]; (6.tad)–(7.tad) imply that the fixed point
is in C2(IM ). In the same way Corollary 8 and Lemma 9 imply that T has such
a fixed point in EM (v) (EM (w)).

2.3 Proof of Theorem 5

We prove 1) only as 2) and 3) would be simple readaptations.
If (1.tad) holds, then V := Tv and W := Tw are in E(w, v) ∩C2([0,∞)). With (1.tad),
(4.tad)–(7.tad) imply that ∀φ ∈ E(w, v) := E∞(w, v),

|Tφ|C2(IM ) ≤ C2
∞(w) ∀M > 0. (8.tad)

Let (Mk)k∈N be an increasing sequence such that Mk ↗∞ and (uk := uMk
) the

corresponding solutions in Ik := IMk
. uk is extended by uk := Tuk ∈ C2(R+),

say, which satisfies (8.tad) and Ea(uk) = 0 in Ik, uk(0) = A. By means of the
Schauder-Tychonoff’s fixed point theorem, such a required solution is an induc-
tive limit of the (uk) ([3]).

2.4 Proof of Theorem 6

Define this time the inverse operator of (Ea.tad) in IM , K := KM on Cf (M) by

Φ(r) = Kφ(r) :=
∫ M

r

dt

{∫ t

0

(s/t)af(s, φ)ds

}b

.
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From Jensen’s inequality {(1/t)
∫ t

o
saf(s, φ)ds}b ≤ (1/t)

∫ t

0
{saf(s, φ)}bds and

simple integrations by parts, as in (4.tad)–(7.tad), ∀t ∈ IM ,

b(a− 1)Φ(t) ≤
∫ M

0

sbf(s, φ)bds := Ib
M (φ); |Φ′(t)| ≤ (1/t)Ib

t (φ)

and (6.tad) holds for this case.
If necessary, we replace f by f1 := λf such that

[(p− 1)/(a− 1)]
∫ ∞

0

{sf1(s, w)}1/(p−1)ds < v(0) in (2.tad);

the required solution will be u(r) := u1(µr) for some suitable µ = µ(λ), u1 being
obtained with f1. So, without major difficulties the proof of this Theorem follows
the same steps as that of Theorem 5.
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