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Abstract. The infinite Markov trigonometric moment problem with pe-
riodic gaps is considered. The precise analytical description of the solv-
ability set of the problem is given. The introduced approach is based on
investigation of the special subclass of the Carathéodory function class
corresponding to given periodic law.
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Let p be a natural number and M = {my,... ,m,} , where
0<mg<m; <mg <---<my <p,
is the subset of the set {0,1,...p —1}.

Definition 1. We will refer to the sequence M = {my},-,, which is the p-pe-
riodic extension of M to the set N U {0}, i.e.

0<my<m; < <My, <p<Myy1=mo+p<---
...<',7fl2y_,'_1:'rn/u_’_p<...7

as a p-periodic law generated by M.
If from [ € M implies p — | € M, we will say, that the p-periodic law is a
symmetric one.

Let M = {mk}zozo be a p-symmetric periodic law. Consider the infinite
Markov trigonometric moment problem of the form:

0

/eimktf(t)dtzsmk, fI<1,  te(0,0), k=0,1,2,..., (1)
0

This is the preliminary version of the paper.
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where 0 < 6 < 27”.

Our first goal is to give conditions for the complex sequence {sm, }%2, =
{am, + by, }rey (if 0 € M then by = 0) to be a moment one. That means that
there exists at least one measurable function f satisfying moment equalities (1).

As it is known, the classical trigonometric moment problem (mj = k) is
closely connected with Carathéodory coefficient problem [1] and based on the
technique of the Carathéodory functions [2].

Remind that for the class C of Carathéodory functions one can write:

C :={F': F is holomorphic, Re F(z) > 0 for|z| < 1}.
Further we need the following theorem describing properties of certain functions

from this class:

Theorem 2. Let T = |J T be a collection of nonintersecting intervals T; =
j=1
(Tj,TJ/») C [0,27]. Then the following statements are equivalent to each other:
i) A function F(z) € C is holomorphic for z = €™ and ImF(e") =0, 7 € T.

il) The following representation holds:

et — z

RS

F(z) = [FO) exp{ I dt},

[0,27\T
—1< () <1, telo,2a\T.

iti) Two functions

N e i N ’ i%
+ eli —z *ég (7j=3)
F ( <H elTJ . . Jj=1

belong to the class C' .

Introduce the subclass of the Carathéodory function class associated with a
p-periodic law.

Definition 3. For the subclass C(M) corresponding to the periodic law M we
call the set of functions F(z), satisfying the following conditions:

i) FecC.

ii) F is holomorphic and real on the arc z = €™, where 7 € (27” (p—v), 27r) .

ili) Power series for the function In (‘ FEO)I) is of the form:

PO &
“<|F<o>|)‘;)”k st
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Further we give a multiplicative description of the class C(M) .
Introduce the polynomial r*(z) of the form:

q p—1
H 1 —e, Fz) = E rz,
k=1 1=0
where e, is a primitive root of unity, of order p,

FZ{%,,’Yq}:{O,l,vp—l}\M

Note that ro =1, =0,l>¢=p—v —1.
Besides, if M is a symmetric law then rj are real, k =0,1,... ,p— 1.

Theorem 4. A function F(z) € C(M), where M is a p-periodic symmetric law,
iff

1=0 € G —Z

|
o\thw

. q 1‘ 2_7r) Tz
F(2) = [F(0) exp{ S on S so(t)dt},

1

where —pu < ¢ (t) < p, p=t = max{|r,|, 1 =0,q}.

Let a sequence {S,, }ro, be a moment one for the problem (1). Complete
then the definition of the function f(¢) by f(t) =0, t € (O, 27”) . Next consider
the function ¢(t), t € (0,27), of the form:

o(t) = iy f(t— 2—”1), Le (2—”1 21(z+1)> AL 1=01,.. .p—1.
p p p
Note that

lpt) <1,  te(0,2n),
lot)| <p,  te Ag;

Next consider the complex function

F(z)zexp{%/z;i—zgo(t)dt}. (2)

0

Note that |F(0)| = 1. Hence due to Theorem 4 obtain that F(z) € C(M). Besides
p(r) =0, 7€ (0, 27”) , then the function F'(z) is holomorphic and real on the

arc z = €7 | T € (9, 27”) (Theorem 2). Applying Theorem 2 once more and
considering T' = (97 27”) U (27”((] +1), 27r), we obtain that F*(z) € C, where

Fi(z)ZF(z)'(:ﬁ;__z'eglﬂ__zz-w:p{-%(%r(p—fﬂ—@)})i%- (3)
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Let
o0
Fi(z)zai—kz%-iz], |z| < 1. (4)
j=1
Express now coefficients a®, af, j = 1,2,... of the expansion via elements of
the moment sequence s,,,, £ =0,1,...
Let
o0
In F£(z) = Zsj[z], (5)
j=0
then
- %(2_50”7,]%(@;{,)8_]‘:&’0]',]’ e M, (6)
J :l:nja .7 ¢ M7
where

no:%(%ﬂ(p—@—@,

=i 4o~ Flat)i _ =% (7)
n; = - ,
J
One can see from (4) and (6) that:
+
o = expsy,
°f 2op
+ (0% Q o n 4
A=l LT =) sy (8)
0 0 o]

Thus, taking account of (6) we can regard (8) as recurrent expressions of the
coefficients o, aT, j=12,... via sy, k=0,1,2...

Now we are able to formulate the main result of the paper.

Theorem 5. A sequence {sm, }rq i a moment one for the Markov trigono-
metric moment problem (1) associated with the p-symmetric periodic law M iff

AF>0,n=0,1,2,...
where

— the coefficients ai,a;t,j = 1,2,... are expressed via sequence {s;t};io
by means of (8),

— s;,J=0,1,... are of the form (6) ,

— n; ,7=0,1,2,... are defined from (5),

At

n’

n
n=20,1,... are symmetric matrices such that A,il = (af_j)
k,j=1
where aat = o +at = 2Rea™, afj = aji, j=12...
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