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A Posteriori Error Estimates for a Nonlinear

Parabolic Equation?
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CZ-115 67 Praha 1, Czech Republic

Email: segeth@math.cas.cz

Abstract. A posteriori error estimates form a reliable basis for adaptive
approximation techniques for modeling various physical phenomena. The
estimates developed recently in the finite element method of lines for
solving a parabolic differential equation are simple, accurate, and cheap
enough to be easily computed along with the approximate solution and
applied to provide the optimum number and optimum distribution of
space grid nodes.
The contribution is concerned with a posteriori error estimates needed for
the adaptive construction of a space grid in solving an initial-boundary
value problem for a nonlinear parabolic partial differential equation by
the method of lines. Under some conditions, it adds some more state-
ments to the results of [2] in the semidiscrete case. Full text of the con-
tribution will appear as a paper [4].

AMS Subject Classification. 65M15, 65M20

Keywords. A posteriori error estimate, nonlinear parabolic equation,
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1 A Nonlinear Model Problem

The principal ideas of semidiscrete a posteriori error estimation for nonlinear
parabolic partial differential equations can be demonstrated with the help of a
simple initial-boundary value one-dimensional model problem. We consider the
nonlinear equation

∂u

∂t
(x, t)− ∂

∂x

(
a(u)

∂u

∂x
(x, t)

)
+ f(u) = 0, 0 < x < 1, 0 < t ≤ T,

for an unknown function u(x, t) with the homogeneous Dirichlet boundary con-
ditions

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ T,

? This work was supported by Grant No. 201/97/0217 of the Grant Agency of the
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and the initial condition

u(x, 0) = u0(x), 0 < x < 1.

In the above formulae, T > 0 is a fixed number and a, f , and u0 are smooth
functions. Let

0 < µ ≤ a(s) ≤M, s ∈ R,

and let a and f satisfy the global Lipschitz conditions

|a(r) − a(s)| ≤ L|r − s|,
|f(r)− f(s)| ≤ L|r − s|, r, s ∈ R.

We employ the usual L2(0, 1) inner product to introduce the weak solution
u(x, t) ∈ H1([0, T ], H1

0 (0, 1)) of the model problem by the identity(∂u

∂t
, v

)
+

(
a(u)

∂u

∂x
,
∂v

∂x

)
+ (f(u), v) = 0

holding for almost every t ∈ (0, T ] and all functions v ∈ H1
0 , and the identity(

a(u0)
∂u

∂x
,
∂v

∂x

)
=

(
a(u0)

∂u0

∂x
,
∂v

∂x

)
holding for t = 0 and all functions v ∈ H1

0 .

2 Discretization

Finite element solutions of the model problem are constructed from this weak
formulation, too. We first introduce a partition

0 = x0 < x1 < · · · < xN−1 < xN = 1

of the interval (0, 1) into N subintervals (xj−1, xj), j = 1, . . . , N , and then put

hj = xj − xj−1, j = 1, . . . , N, and h = max
j=1,...,N

hj .

We further use the notation

(v, w)j =
∫ xj

xj−1

v(x)w(x) dx

for the L2(xj−1, xj) inner product.
We construct the finite dimensional subspace SN,p

0 ⊂ H1
0 with a piecewise

polynomial hierarchical basis of degree p ≥ 1 in the following way. We put

SN,p
0 =

{
V | V ∈ H1

0 , V (x) =
N−1∑
j=1

Vj1ϕj1(x) +
N∑

j=1

p∑
k=2

Vjkϕjk(x)
}

,
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where ϕj1 are the usual piecewise linear shape functions of the finite element
method,

ϕj1(x) = (x− xj−1)/hj , xj−1 ≤ x < xj ,

= (xj+1 − x)/hj+1, xj ≤ x ≤ xj+1,

= 0 otherwise,

while for k > 1,

ϕjk(x) =

√
2(2k − 1)

hj

∫ xj

xj−1

Pk−1(y) dy, xj−1 ≤ x ≤ xj ,

= 0 otherwise

are bubble functions with Pk being the kth degree Legendre polynomial scaled
to the subinterval [xj−1, xj ] (see, e.g., [5]).

We say that a function Ū(x, t) is the semidiscrete finite element approximate
solution of the model problem if it belongs, as a function of the variable t, into
H1([0, T ], SN,p

0 ), if the identity(∂Ū

∂t
, V

)
+

(
a(Ū)

∂Ū

∂x
,
∂V

∂x

)
+ (f(Ū), V ) = 0

holds for each t ∈ (0, T ] and all functions V ∈ SN,p
0 , and if the identity(

a(u0)
∂Ū

∂x
,
∂V

∂x

)
=

(
a(u0)

∂u0

∂x
,
∂V

∂x

)
holds for t = 0 and all functions V ∈ SN,p

0 . The procedure for constructing the
approximate solution

Ū(x, t) =
N−1∑
j=1

Ūj1(t)ϕj1(x) +
N∑

j=1

p∑
k=2

Ūjk(t)ϕjk(x)

described above is the method of lines. It transforms the solution of the origi-
nal initial-boundary value problem for a parabolic partial differential equation
into an initial value problem for a system of ordinary differential equations for
the unknown functions Ūjk(t) that, in practice, is solved by proper numerical
software.

3 A Posteriori Semidiscrete Error Indicators

Let
e(x, t) = u(x, t)− Ū(x, t)

be the error of the semidiscrete approximate solution. We employ the finite
dimensional subspace

ŜN,p+1
0 =

{
V̂ | V̂ ∈ H1

0 , V̂ (x) =
N∑

j=1

V̂jϕj,p+1(x)
}
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of piecewise polynomial bubble functions of degree p + 1 equal to zero at the
grid points xj to construct error indicators. We say that a function Ē(x, t) =
ĒPN ∈ H1([0, T ], ŜN,p+1

0 ) is a parabolic nonlinear a posteriori semidiscrete error
indicator if the identities(∂Ē

∂t
, V̂

)
j
+

(
a(Ū + Ē)

∂Ē

∂x
,
∂V̂

∂x

)
j

= −(f(Ū + Ē), V̂ )j −
(∂Ū

∂t
, V̂

)
j
−

(
a(Ū + Ē)

∂Ū

∂x
,
∂V̂

∂x

)
j

hold for j = 1, . . . , N , all t ∈ (0, T ] and all functions V̂ ∈ ŜN,p+1
0 , and if the

identities (
a(u0)

∂Ē

∂x
,
∂V̂

∂x

)
j

=
(
a(u0)

∂(u0 − Ū)
∂x

,
∂V̂

∂x

)
j

hold for j = 1, . . . , N , t = 0 and all functions V̂ ∈ ŜN,p+1
0 . Note that the special

choice of the bubble function space ŜN,p+1
0 results in an uncoupled system of

ordinary differential equations. On each interval (xj−1, xj), the error indicator

Ē(x, t) =
N∑

j=1

Ēj(t)ϕj,p+1(x)

is computed independently of the other intervals. The indicator thus has a local
character and its computation is rather cheap.

When Ē is neglected in the argument of the functions a and f we say that
a function Ē(x, t) = ĒPL ∈ H1([0, T ], ŜN,p+1

0 ) is a parabolic linear a posteriori
semidiscrete error indicator if the identities(∂Ē

∂t
, V̂

)
j
+

(
a(Ū)

∂Ē

∂x
,
∂V̂

∂x

)
j

= −(f(Ū), V̂ )j −
(∂Ū

∂t
, V̂

)
j
−

(
a(Ū)

∂Ū

∂x
,
∂V̂

∂x

)
j

hold for j = 1, . . . , N , all t ∈ (0, T ] and all functions V̂ ∈ ŜN,p+1
0 , and if the

identities (
a(u0)

∂Ē

∂x
,
∂V̂

∂x

)
j

=
(
a(u0)

∂(u0 − Ū)
∂x

,
∂V̂

∂x

)
j

hold for j = 1, . . . , N , t = 0 and all functions V̂ ∈ ŜN,p+1
0 . The practical com-

putation of the linear error indicator is thus easier.
The task to compute error indicators can be simplified if the derivative ∂Ē/∂t

is neglected. The corresponding a posteriori semidiscrete error indicator is then
called (linear or nonlinear) elliptic indicator since the resulting uncoupled alge-
braic system does not depend on t. Moreover, the practical computation of such
an elliptic indicator need not be carried out for each t but only when required.
We thus say that the function Ē(x, t) = ĒEN that maps [0, T ] into ŜN,p+1

0 is an
elliptic nonlinear a posteriori semidiscrete error indicator if the identities(

a(Ū + Ē)
∂Ē

∂x
,
∂V̂

∂x

)
j

= −(f(Ū + Ē), V̂ )j −
(∂Ū

∂t
, V̂

)
j
−

(
a(Ū + Ē)

∂Ū

∂x
,
∂V̂

∂x

)
j
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hold for j = 1, . . . , N , all t ∈ (0, T ] and all functions V̂ ∈ ŜN,p+1
0 , and if the

identities (
a(u0)

∂Ē

∂x
,
∂V̂

∂x

)
j

=
(
a(u0)

∂(u0 − Ū)
∂x

,
∂V̂

∂x

)
j

hold for j = 1, . . . , N , t = 0 and all functions V̂ ∈ ŜN,p+1
0 .

Finally, we say that the function Ē(x, t) = ĒEL that maps [0, T ] into ŜN,p+1
0

is an elliptic linear a posteriori semidiscrete error indicator if the identities(
a(Ū)

∂Ē

∂x
,
∂V̂

∂x

)
j

= −(f(Ū), V̂ )j −
(∂Ū

∂t
, V̂

)
j
−

(
a(Ū)

∂Ū

∂x
,
∂V̂

∂x

)
j

hold for j = 1, . . . , N , all t ∈ (0, T ] and all functions V̂ ∈ ŜN,p+1
0 , and if the

identities (
a(u0)

∂Ē

∂x
,
∂V̂

∂x

)
j

=
(
a(u0)

∂(u0 − Ū)
∂x

,
∂V̂

∂x

)
j

hold for j = 1, . . . , N , t = 0 and all functions V̂ ∈ ŜN,p+1
0 .

To assess properties of the above semidiscrete a posteriori error indicators,
we introduce the quantity

Θ =
‖Ē‖1
‖e‖1

called the effectivity index of the respective error indicator. The norm used is
the H1(0, 1) norm. Then we can prove the following statement.

Theorem 1. Let u(x, t) ∈ H1
0 be smooth, let Ū(x, t) ∈ SN,p

0 and Ē ∈ ŜN,p+1
0 .

Let the norm of the difference between the semidiscrete solution Ū and its elliptic
projection is a nondecreasing function of t. Let the same hold for the norm of
the difference between the error indicator Ē and its elliptic projection.

Moreover, let
‖e‖1 ≥ Chp.

Then
lim
h→0

Θ = 1

holds for ΘPN, ΘPL, and ΘEL.

The exact assumptions as well as a complete proof will be published in [4].

4 A Numerical Example

We present numerical results obtained by the finite element method of lines
for a nonlinear parabolic initial-boundary value problem (a reaction-diffusion
model) with a simple grid adjustment procedures described in [1] (Fig. 1) and
[3] (Fig. 2). Both the procedures are based on the equidistribution of error. The
example fully confirms the above statement.
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The differential equation solved is

∂u

∂t
− ∂2u

∂x2
−D(1 + α− u) exp(−δ/u) = 0,

D = R
exp δ

αδ
, 0 < x < 1, 0 < t ≤ 0.6,

α = 1, δ = 20, R = 5,

with the boundary conditions

∂u

∂x
(0, t) = 0, u(1, t) = 1, 0 < t ≤ 0.6,

and the initial condition

u(x, 0) = 1, 0 < x < 1.

We used piecewise linear shape functions, i.e. p = 1, for the computation of
the solution Ū and required a very small error bound in the integration of the
corresponding system of ordinary differential equations by a standard differential
system solver.

The model describes a single step reaction of a reacting mixture of temper-
ature u in a region 0 < x < 1. Further, α is the heat release, δ is the activation
energy, D is called the Damkohler number, and R is the reaction rate. For small
times, the temperature gradually increases from unity with a “hot spot” forming
at x = 0. At a finite time, ignition occurs and the temperature at x = 0 jumps
rapidly from near 1 to near 1+α. A sharp flame front then forms and propagates
towards x = 1 with velocity proportional to 1

2 exp(αδ)/(1+α). In real problems,
α is about unity and δ is large. The flame front thus moves exponentially fast
after ignition. The problem reaches a steady state once the flame propagates to
x = 1.

The trajectories of nodes of the partition of interval (0, 1) as constructed by
the two procedures mentioned are shown in Figs. 1 and 2. The grid is rather slow
and is unable to follow the dynamics of the problem properly. The integration
with respect to t requires small time steps and is expensive during this rapid
transience as the solution changes rapidly along the grid node trajectories. The
problem is very difficult and yet adaptive grid methods are capable of finding a
solution with relative ease.
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Fig. 1. Trajectories of nodes constructed by the procedure of [1]
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Fig. 2. Trajectories of nodes constructed by the procedure of [3]
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