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Abstract. The Parametric Representation Method had been applied
successfully to construct bifurcation diagrams relating to equilibria of
dynamical systems whenever the equilibria are determined from a single
equation containing two control parameters linearly. The Discriminant-
curve (that is the saddle-node bifurcation curve parametrized by the
state variable remained after the elimination) is the base of this method,
as it had been shown. The number and even the value of the stationary
state variables can be derived from that.
Here we show some possible extensions of the method via two examples.
1. Nonlinear parameter dependence
2. Reaction-diffusion equations,
Similarly to the above simple case, the PRM provides us with information
about the stationary solutions. Although some features do not remain
valid for these extensions.

AMS Subject Classification. 58F14, 34C23, 35B32,

Keywords. Bifurcation diagrams, multistationarity

1 Introduction

The parametric representation method is a geometric tool for the study of sta-
tionary solutions of differential equations depending on two parameters. There
are well-known methods [12,20,22] giving the bifurcation parameter values (whe-
re the number or stability of stationary solutions changes), and serving with
information on the stationary solutions if the parameters are in a small neigh-
bourhood of the bifurcation values.

Our aim is to divide the whole parameter space according to the number
and the type of the stationary points. We shall call this separation the global
bifurcation diagram;‘global’ refers here to the parameter space, while our inves-
tigation is local in the phase space. The first theoretical result in this direction
was achieved by Rabinowitz [16]. He followed the changes of one stationary state

This is the final form of the paper.
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varying a single parameter value. Details and other references can be found in [5].
In [3,4,9] there are methods for constructing global bifurcation diagrams which
give the number of roots of polynomials. In many practical applications the
construction of such bifurcation diagrams was carried out by ad hoc methods
[11,13,15].

The Parametric Representation Method (PRM) [9] is a systematic approach,
which is especially useful if the parameter dependence of the system is simpler
than the dependence on the state variables. As an example, in chemical dynam-
ical systems the parameter dependence is usually linear, therefore the PRM is
easy to apply [2,14,17]. Some general features of the method together with a
pictorial algorithm for determination of the exact number of stationary points
can be found in [6,7]. PRM was also applied to study the root structure of poly-
nomials and extended to study their complex roots [8]. This method is also a
useful tool to reveal some relations between the saddle-node and Hopf bifurcation
diagrams [17,19].

We summarize the main results concerning the case of linear parameter de-
pendence in Section 2, the detailed study can be found in [18]. In Section 3 it
is shown on an example how can be used the PRM, when the equation (de-
termining the stationary states) contains parameters non-linearly. In Section 4
we illustrate that the PRM may be useful for the determination of stationary
solutions of a scalar reaction-diffusion equation.

2 Linear parameter dependence

We want to give the number of the stationary points of the following ODE:

ẋ(t) = F (x(t), u),

where F : Rn × Rk → Rn is a differentiable function, x(t) ∈ Rn is the vector
of state variables and u ∈ Rk is the vector of parameters. The first step before
executing the global bifurcation analysis is the reduction of the dimension of
the system. There is no general method for that, the optimal one depends on
the structure of the concrete system. The Liapunov-Schmidt reduction or — for
polynomials — the Euclidean algorithm are often useful tools. In this section we
assume that
— the system of algebraic equations F (x, u) = 0 giving the stationary points is
already reduced to a single equation and
— we have two control parameters, u1 and u2, which are involved in the right
hand side of the reduced equation linearly. These control parameters may also be
functions of the original parameters of the system. (Two control parameters are
chosen regularly in practical applications, primarily because of the visualization.)

With these assumptions the above general problem reduces to the following
one:
Problem. Let us divide the parameter plane (u1, u2) with respect to the number
of the solutions of equation

f(x, u1, u2) := f0(x) + f1(x)u1 + f2(x)u2 = 0, (1.far)
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where fi ∈ C2 and f2
1 (x)+f2

2 (x) 6= 0 for all x ∈ R; and give a geometric method
determining the number and values of the solutions at a given parameter pair
(u1, u2).

According to the implicit function theorem the number of solutions may
change when the parameter values cross the singularity set:

S = {(u1, u2) ∈ R2 : ∃x ∈ R , f(x, u1, u2) = f ′(x, u1, u2) = 0},

where prime denotes differentiation with respect to x. The detailed study of
singularities can be found in [1,10]. The PRM has the following advantages:
1. the singularity set can be easily constructed as a curve parametrized by x,
called D-curve; 2. the solutions belonging to a given parameter pair can be
determined by a simple geometric algorithm based on the tangential property;
3. the global bifurcation diagram, that divides the parameter plane according
to the number of solutions can be geometrically constructed with the aid of the
D-curve.

Now let us see how to apply the PRM for (1.far). Concerning the singularity set
the determinant

∆(x) := f1(x)f ′2(x)− f ′1(x)f2(x)

plays a crucial role. For simplicity we assume that ∆(x) 6= 0 for all x ∈ R (the
general case, when ∆ may have zeros is considered in [18]). Then the system

f0(x) + f1(x)u1 + f2(x)u2 = 0, (2.far)
f ′0(x) + f ′1(x)u1 + f ′2(x)u2 = 0, (3.far)

has one and only one solution for (u1, u2). These equations determine the D-curve
for this case:

Definition. The solution of the system (2.far), (3.far) for u1 and u2 is called D-curve
(or discriminant curve). The point belonging to x will be denoted by D(x) =
(D1(x), D2(x)), i.e.

u1 =
f2(x)f ′0(x)− f ′2(x)f0(x)

∆(x)
=: D1(x),

u2 =
f1(x)f ′0(x)− f ′1(x)f0(x)

∆(x)
=: D2(x).

Thus we produced the singularity set as a curve parametrized by x.
Let us introduce the straight lines:

M(x) := {(u1, u2) ∈ R2 : f(x, u1, u2) = 0},

i.e. the set of parameter pairs for which a given number x is a solution of (1.far).
The main point of the PRM is the fact that the D-curve (the singularity set) is
the envelope of these lines. This fact is involved in the following theorem, which
will be referred to as tangential property.
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Fig. 1.

Theorem 1. The line M(x) is tangential to the D-curve at the point D(x).

For the proof see [18] Theorem 4.

Corollary 1. The number of solutions of (1.far) belonging to a given parameter
pair (u1, u2) is equal to the number of tangents, which can be drawn to the
D-curve from the point (u1, u2).

Thus as a solution of our problem we got the following:
Geometric algorithm. Draw the D-curve belonging to our equation. Given
a parameter pair (u1, u2) any tangent from this point to the D-curve gives a
solution x of the equation; the value of x can be read on the D-curve at the
tangential point.

As an illustration let us consider the equation

x3 + u1x + u2 = 0.

The D-curve is determined by the system

x3 + u1x + u2 = 0,

3x2 + u1 = 0.

From this system we get

D1(x) = −3x2, D2(x) = 2x3.

The D-curve is depicted in Fig. 1. If (u1, u2) is on the left side of the D-curve,
then the equation has three solutions, because we can draw three tangents from
(u1, u2) to the D-curve. If (u1, u2) is on the right side of the D-curve, then there
is one solution, because we can draw one tangent from (u1, u2). The value of x
on the D-curve is increasing with increasing u2 and it is zero at the origin.

The determination of the number of the tangents is facilitated by the so-called
convexity property: the D-curve consists of convex arcs that join together in
cusp points. To be more formal we cite Theorem 5 from [18]:
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Theorem 2. Suppose that the roots of the function

B(x) := f ′′0 (x) + f ′′1 (x)D1(x) + f ′′2 (x)D2(x)

are isolated.

(i) If B changes its sign at x0 then the D-curve has a cusp point at x0.
(ii) If B does not change its sign at x0 then the D-curve is locally on the left

(right) side of its tangent belonging to x0 if ∆(x0) is positive (negative).

The D-curve also gives the global bifurcation diagram (GBD) i.e. the curve
(or system of curves) which divides the parameter plane into regions within
which the number of solutions of (1.far) is constant. The construction of the GBD
is based on the fact that the number of roots of a function may change in two
ways:

1. it has a multiple root (the derivative vanishes at a root),
2. a root goes to (or comes from) the infinity.
The GBD consists of the D-curve and its tangents or asymptotes (if they

exist) at the points belonging to x→∞ and x→ −∞. For the exact formulation
see Theorem 6 in [18].

3 Nonlinear parameter dependence

In this section we apply the PRM for the special equation

x2 + u2
1x + u2 = 0. (4.far)

Our aim is to divide the parameter plane (u1, u2) according to the number
of solutions (x ∈ R) of (4.far). The singularity set is determined by (4.far) and

2x + u2
1 = 0. (5.far)

The solution of the system (4.far)–(5.far) is

u2
1 = −2x, u2 = x2. (6.far)

Thus the singularity set can not be parametrized by x, but we can define the
D-curve with two branches D+ and D− as follows (see Fig. 2.):

Definition. The two solutions of (4.far)–(5.far) for (u1, u2) are called the two branches
of the D-curve for x ≤ 0, i.e.

D+
1 (x) =

√
−2x, D+

2 (x) = x2,

D−1 (x) = −
√
−2x, D−2 (x) = x2.
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Similarly as in Section 2 let us introduce

M(x) := {(u1, u2) ∈ R2 : x2 + u2
1x + u2 = 0},

which is in this case a parabola for a given x ∈ R. The singularity set is the
envelope of the parabolas belonging to x < 0, therefore the tangential property
holds in the following form:

Theorem 3. For a fixed x < 0 the parabola M(x) is tangential to the D+ and
D− curves at the points D+(x) and D−(x).

The tangential property does not refer to the values x > 0, however, it is
obvious from (6.far) that there is no singularity for these values. Therefore the
parabolas M(x) belonging to x > 0 do not intersect each other, they form a
one-fold cover of the lower half plane. Thus the number of solutions can be given
by the following:
Geometric algorithm. Given a parameter pair (u1, u2) any tangential parabola
of the form (4.far) from this point to the D-curve gives a solution x of the equa-
tion (4.far); the value of x can be read on the D-curve at the tangential point (the
value of x is the same on the D+ and on the D− branches). If the parameter pair
is in the upper half plane, then the number of the tangential parabolas is equal
to the number of solutions. If the parameter pair is in the lower half plane, then
the number of solutions is more by one than the number of tangential parabolas.

Using this algorithm we get that the number of solutions of (4.far) is 0 if (u1, u2)
is above the D-curve, and it is 2 if (u1, u2) is below the D-curve, see Fig. 2.
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Fig. 2.
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4 Application of the PRM to a reaction-diffusion
equation

Let us consider the reaction-diffusion equation

∂tu(t, x) = ∂xxu(t, x) + f(u(t, x), a, b)

with the boundary condition

u(t, 0) = u(t, 1) = 0,

where f : R3 → R is a differentiable function. The stationary solutions are
determined by the following boundary value problem:

v′′(x) + f(v(x), a, b) = 0, (7.far)
v(0) = v(1) = 0. (8.far)

We will study the following:
Problem. Divide the parameter plane (a, b) according to the number of the
solutions of (7.far)–(8.far).

The boundary value problem (7.far)–(8.far) is usually [20,21] reduced to the phase
plane analysis of the system

v′ = w, (9.far)
w′ = −f(v, a, b). (10.far)

If we have a p ∈ R, such that the trajectory t → (v(t), w(t)) of (9.far)–(10.far)
starting from (0, p) reaches the vertical axis (v = 0) at time 1 (i.e. v(1) = 0),
then v is a solution of (7.far)–(8.far). Therefore the time map T is defined that measures
the time an orbit takes to get from the point (0, p) to the vertical axis. This time
is the double of that one the orbit takes to get from the point (0, p) to the
horizontal axis (say, at point (0, q)), because the flow of (9.far)–(10.far) is symmetric
to the horizontal axis. System (9.far)–(10.far) has the first integral

H(v, w) =
w2

2
+ F (v),

where F (v) =
∫ v

0 f(s) ds. This first integral enables us to calculate the time map
explicitly:

T (p) = 2
∫ q

0

1√
2(F (q)− F (v))

dv.

The relation between p and q is given by the first integral: F (q) = p2

2 . Thus the
time map can be regarded as a function of q, a and b:

S(q, a, b) = 2
∫ q

0

1√
2(F (q)− F (v))

dv.
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A solution q of

S(q, a, b) = 1 (11.far)

gives a solution of (7.far)–(8.far). However, several solutions of (7.far)–(8.far) may give the
same q as a solution of (11.far). Therefore our problem partially reduces to the
following one:
Problem. Divide the parameter plane according to the number of solutions
of (11.far).

This problem is similar to that one dealt with in Section 3 (the parameter de-
pendence may be more complicated). Using the PRM we can define the D-curve
(singularity set) belonging to equation (11.far). It is determined by the equations:

S(q, D1(q), D2(q)) = 1,

∂qS(q, D1(q), D2(q)) = 0.

Solving these equations numerically one can get a curve on the parameter
plane (a, b), which divides it into regions according to the number of solutions
of (11.far).
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