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1 Introduction

One of the characteristic properties of Hamiltonian and reversible systems is that
(symmetric) periodic orbits of such systems typically appear in one-parameter
families, in contrast to periodic orbits of general systems which are typically
limit cycles, i.e. they are isolated. Starting from this observation one can raise a
number of questions, such as (1) how do branches of periodic orbits originate or
terminate? (2) is there any “branching”, i.e. can one branch of periodic orbits
bifurcate from another such branch? and (3) how does this branching process
change when parameters in the system are changed? In this paper we survey
a number of results on these issues which we obtained in recent years in col-
laboration with Bernold Fiedler, Jan-Cees van der Meer, Jürgen Knobloch and
Maria-Cristina Ciocci.

We will consider two different types of systems, namely Hamiltonian systems
from one side, and reversible systems from the other side. Although in practice
many Hamiltonian systems are also reversible, the two classes do not coincide,
and we will treat them here strictly separated. Some of the results which we quote
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for Hamiltonian systems remain valid for the much larger class of conservative
systems, i.e. for systems which have a first integral. Also, some of the results are
for fixed systems, while others require one or more external parameters.

The Hamiltonian systems which we will consider have the form

ẋ = XH(x, λ) := J∇xH(x, λ), (1.1.van)

where x ∈ R2n, λ ∈ Rm, H : R2n × Rm → R is a smooth function (the
Hamiltonian), and J ∈ L(R2n) is the standard symplectic matrix defined by
J(y, z) := (z,−y) for all y, z ∈ Rn. It is immediate to see that H(·, λ) is a first
integral for (1.1.van)λ. We also consider reversible systems of the form

ẋ = f(x, λ), (1.2.van)

again with x ∈ R2n and λ ∈ Rm, and with f : R2n × Rm → R2n a smooth
parameter-dependent vectorfield such that

f(Rx, λ) = −Rf(x, λ) (1.3.van)

for some linear operator R ∈ L(R2n) satisfying R2 = I (i.e. R is a linear in-
volution on R2n) and dim Fix(R) = n. If x̃(t) is a solution of (1.2.van) then so is
ỹ(t) := Rx̃(−t); a (maximal) solution of (1.2.van) with orbit γ is called symmetric
if Rγ = γ.

We first show why periodic orbits of (1.1.van) or (1.2.van) appear typically in one-
parameter families (at fixed values of the parameter λ). Let γ0 be a periodic
orbit of a Hamiltonian vectorfield XH , let Σ be a transversal section to γ0 at
a point x0 ∈ γ0, and let P : Σ → Σ be the corresponding Poincaré mapping.
For each h ∈ R near h0 := H(x0) we set Eh := {x ∈ R2n | H(x) = h} and
Σh := Σ ∩Eh. Since H is a first integral for XH it follows that P leaves each Σh

invariant, which allows us to define Ph : Σh → Σh as the restriction of P to Σh.
Clearly x0 is a fixed point of Ph0 , and if 1 is not an eigenvalue of DPh0 (which is
typically the case) this fixed point persists for all nearby values of h. Hence we
obtain a 1-parameter family of periodic orbits parametrized by the “energy” h.
In the reversible case we use the property that a nontrivial orbit γ is symmetric
and periodic if and only if γ intersects Fix (R) in exactly two points; the period
then equals twice the time needed to travel along γ between these two points.
Now suppose that γ0 is a symmetric periodic orbit for a reversible vectorfield
f(x), with minimal period T0 > 0, and let x0 and y0 be the two intersection
points of γ0 and Fix (R). Then x0 and y0 also belong to the intersection of
Fix (R) with φT0/2(Fix (R)) (where φt(x) denotes the flow of f ), and generically
this intersection will be transversal. If this is the case then the two intersection
points will persist for nearby values of T , i.e. for each T near T0 the intersection
of Fix (R) with φT/2(Fix (R)) will contain two points xT and yT which generate a
symmetric T -periodic orbit of f . We conclude that typically symmetric periodic
orbits of reversible vectorfields appear in one-parameter families parametrized
by the period T .
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In the main part of this paper we will discuss how branches of (symmetric)
periodic orbits can originate at equilibria (Section 2) or terminate at homoclinics
(Section 3); we will also show how the bifurcation of subharmonic solutions leads
to “branching” (Section 4). Finally we will very briefly discuss the phenomenon
of subharmonic cascades (Section 5).

2 Branches originating at equilibria

The simplest conditions under which a branch of periodic orbits can originate
from an equilibrium are given by the classical Liapunov Center Theorem. In the
Hamiltonian case this theorem reads as follows.

Theorem 1. Consider a Hamiltonian vectorfield XH and let x0 ∈ R2n be such
that:

(i) XH(x0) = 0;
(ii) A0 := DXH(x0) has a pair of simple purely imaginary eigenvalues ± iω0

(with ω0 > 0);
(iii) (nonresonance condition) A0 has no other eigenvalues of the form ± ikω0,

with k ∈ Z, k 6= ±1.

Then the vectorfield XH has a smooth 2-dimensional locally invariant manifold
containing x0 and foliated by periodic orbits surrounding x0. As one moves along
this 1-parameter family of periodic orbits towards x0 the minimal period tends
to T0 := 2π/ω0. �

In the reversible case a similar result holds:

Theorem 2. Let f be a reversible vectorfield, and let x0 ∈ Fix (R) be a sym-
metric equilibrium of f such that the linearization A0 := Df(x0) has a pair
of simple purely imaginary eigenvalues ± i ω0 (ω0 > 0) and no other eigenval-
ues of the form ± ikω0 (k ∈ Z, k 6= ±1). Then the vectorfield f has a smooth
R-invariant 2-dimensional locally invariant manifold containing x0 and foliated
by a 1-parameter family of symmetric periodic orbits. As one moves along this
family of periodic orbits towards the equilibrium the minimal period tends to
T0 := 2π/ω0. �

The situations described by the theorems 1 and 2 are robust under perturbations:
if in a parametrized family of Hamiltonian (respectively reversible) vectorfields
the conditions of Theorem 1 (respectively Theorem 2) are satisfied for a certain
value λ0 of the parameter then they remain satisfied for all nearby values of the
parameter. The reason for this is that if µ0 ∈ C is an eigenvalue of A0 then so is
−µ0; as a consequence the simple purely imaginary eigenvalues whose existence
was assumed in the foregoing theorems cannot move off the imaginary axis when
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the system is perturbed. However, in parametrized families of Hamiltonian or
reversible systems it is possible to find in a generic way equilibria for which the
linearization has a pair of purely imaginary eigenvalues for which the conditions
of Theorems 1 and 2 are not satisfied, because either these eigenvalues are not
simple, or because the nonresonance condition is not satisfied, or both. A well
known example is that of a so-called Krein instability (also called a 1:1-resonance
or a Hamiltonian Hopf bifurcation) in a one-parameter family of Hamiltonian
systems: in their simplest form the hypotheses are that there is an equilibrium
(say at x = 0) at which the linearization Aλ := DxXH(0, λ) has for small λ < 0
two pairs of simple purely imaginary eigenvalues close to each other which merge
for λ = 0 into a single pair of non-semisimple purely imaginary eigenvalues and
split off the imaginary axis for λ > 0. An application of Theorem 1 shows that
for fixed small λ < 0 the system has two one-parameter families of periodic
orbits emanating from the equilibrium x = 0; the question arises what happens
to these periodic orbits as λ passes through zero and becomes positive.

The answer to these question depends on some third order coefficient in the
normal form of the vectorfield XH(·, 0), i.e. on some fourth order coefficient in
the normal form of the Hamiltonian H(·, 0). Generically (when considering one-
parameter problems as described above) this coefficient is non-zero; depending
on its sign we have either an elliptic or a hyperbolic bifurcation. In the elliptic
case the two families of periodic orbits which emanate from the equilibrium for
λ < 0 are connected and form one single branch which at both sides tends to the
equilibrium; we call this a local branch. As λ increases towards zero this local
branch shrinks and is absorbed by the equilibrium for λ = 0. For λ ≥ 0 there
are no nontrivial periodic orbits nearby the equilibrium. In the hyperbolic case
we have the following scenario. For λ < 0 the two families of periodic orbits
emanating from the equilibrium are not connected to each other (at least not
locally); we say that we have two global branches. For λ = 0 these two global
branches become at the equilibrium tangent to each other; for λ > 0 they detach
from the equilibrium and merge into one single branch of periodic orbits which
no longer contains the equilibrium. A complete analysis of this Hamiltonian Hopf
bifurcation can be found in [20].

The same bifurcation scenario as described above also appears at generic 1 :1 -
resonances in one-parameter families of conservative or reversible systems (see
respectively [6] and [7]). The result can be extended to equivariant conservative
or equivariant reversible systems (see [14] and [8]). It is also possible to consider
situations where k > 2 pairs of purely imaginary eigenvalues come together and
split off the imaginary axis under a change of parameters; such situations appear
generically in k− 1-parameter families of conservative or reversible systems. An
analysis of the bifurcation of periodic orbits at such k-fold resonances can be
found in [6] and [7].

A further question which arises in the context of such resonances is about
the stability of the periodic orbits appearing in these bifurcation scenario’s. It is
important to notice that if µ ∈ C is a characteristic multiplier of a periodic orbit
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in a Hamiltonian or reversible system, then so is 1/µ; consequently a periodic
orbit is called stable if all its multipliers are on the unit circle, and unstable if
there are some multipliers off the unit circle. Taking into account only the crit-
ical multipliers it can be shown for the Hamiltonian Hopf bifurcation described
above (see [20]) that in the hyperbolic case all periodic orbits appearing in the
bifurcation scenario are stable; in the elliptic case the local branch which exists
for λ < 0 is divided into three parts: the periodic solutions along the middle
part are unstable, those along the two outer parts (adjacent to the equilibrium)
are stable. The same result also holds at a 1 : 1-resonance in reversible systems
(see [4] and [9]); here the transition points between stable and unstable solutions
along the local branch in the elliptic case are sometimes called Eckhaus points .
At these Eckhaus points there can be secondary bifurcations, in particular of
orbits homoclinic to periodic orbits (again, see [4]). Finally, the stability of pe-
riodic orbits near a 3-fold resonance in reversible systems will be discussed in
some forthcoming paper [9].

There are several tools available for studying the bifurcation of periodic orbits
at resonances in Hamiltonian or reversible systems; the most popular ones are the
Liapunov-Schmidt reduction and normal form theory. We conclude this section
by describing a general type of reduction result which can (and has) been used
for analyzing the type of resonances considered here. More details and proofs
can be found in [17] and [5]. These proofs are based on a combined use of normal
form theory and the Liapunov-Schmidt reduction; however, the reduction result
can be used directly, without going into the details of either of these methods
(see [6] and [7] for some examples).

Consider a system

ẋ = f(x, λ), (2.1.van)

where the vectorfield f : R2n × Rm → R2n is either Hamiltonian or reversible,
and satisfies f(0, λ) = 0 for all λ. We are then interested in solving the following
problem:

(P) Find, for all (λ, T ) near a given (λ0, T0) ∈ Rm×]0,∞[, all sufficiently
small T -periodic solutions of (2.1.van)λ.

Let A0 := Dxf(0, λ0) be the linearization of f(·, λ0) at the equilibrium in the
origin, and assume that A0 is nonsingular, such that there is no bifurcation of
equilibria at λ = λ0. Let A0 = S0 + N0 be the Jordan decomposition of A0

into its semisimple and nilpotent parts (i.e. S0 is semisimple, N0 is nilpotent,
and S0N0 = N0S0). Next we introduce the so-called reduced phase space for our
problem; this is a subspace of R2n defined by

U := ker
(
eS0T0 − I

)
. (2.2.van)

There exists a natural S1-action on U , generated by S := S0|U and explicitly
given by

ϕ ∈ S1 ∼= R/T0Z 7−→ eSϕ ∈ L(U). (2.3.van)
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Also, the space U is even-dimensional and invariant under J or R depending on
whether f is Hamiltonian or reversible; therefore it makes sense to talk about a
Hamiltonian (respectively reversible) vectorfield on U .

We have then the following reduction result.

Theorem 3. Under the foregoing conditions there exists for each (λ, T ) near
(λ0, T0) a one-to-one correspondence between the small T -periodic solutions of
(2.1.van)λ and the small T -periodic solutions of a reduced equation

u̇ = fr(u, λ), (2.4.van)

where the reduced vectorfield fr : U ×Rm → U has the following properties:

(1) fr(0, λ) = 0 for all λ, and Dufr(0, λ0) = S + N , where N := N0|U ;
(2) fr is Hamiltonian or reversible, depending on whether f is Hamiltonian

or reversible;
(3) fr is S1-equivariant, i.e. we have

fr(eSϕu, λ) = eSϕfr(u, λ), ∀ϕ ∈ S1; (2.5.van)

Moreover, all small T -periodic solutions of (2.4.van)λ have the form

ũ(t) = e(1+σ)Stu (2.6.van)

with u ∈ U small and T = T0/(1 + σ). �

An analogous result holds for conservative systems, under appropriate non-
degeneracy conditions for the first integral. The last conclusion of Theorem 3
combined with the S1-equivariance of fr shows that in order to obtain the bifur-
cation picture for our problem (P) we have to study the determining equation

(1 + σ)Su = fr(u, λ) (2.7.van)

for (u, λ, σ) near (0, λ0, 0). It is shown in [17] and [5] how the reduced vectorfield
fr can be calculated or approximated by bringing the original vectorfield f into
normal form. It should be emphasized that although (2.7.van) is a finite-dimensional
equation it is in general not yet the bifurcation equation for our problem (P)
since its linearization at (u, λ, σ) = (0, λ0, 0) is not identically zero but gives the
equation Nu = 0; however, when the nilpotent operator N is known it is fairly
simple to deduce the bifurcation equations from (2.7.van).

3 Branches terminating at homoclinics

When moving along a branch of periodic orbits in a Hamiltonian, conservative
or reversible system it is possible that the period tends to infinity while the



Periodic Solutions of Hamiltonian Systems 175

orbit itself remains bounded; the limiting orbit may then for example be a ho-
moclinic orbit. Examples of such homoclinic period blow-up are well known for
one-degree-of-freedom Hamiltonian systems, i.e. when n = 1 in (1.1.van). Consider
for example the phase portrait for the Hamiltonian system with Hamiltonian
H(y, z) = 1/2z2 + y3− y2; this system has two equilibria, a center and a saddle;
the periodic orbits which originate at the center terminate in a period blow-up at
an orbit homoclinic to the saddle. In [15] it is shown that this type of behavior is
typical near (symmetric) homoclinic orbits in conservative or reversible systems,
whatever their dimension. In this section we briefly describe the main result of
[15].

We consider a system

ẋ = f(x). (3.1.van)

In the conservative case we assume that x ∈ Rn, that f : Rn → Rn is smooth,
and that there exists a smooth function H : Rn → R such that DH(x) ·f(x) = 0
for all x ∈ Rn; moreover it is assumed that:

(C) (i) there exists an orbit γ0 of (3.1.van) which is homoclinic to a hyperbolic
equilibrium x0 ∈ Rn;

(ii) the homoclinic orbit γ0 is non-degenerate, i.e.

dim (TyW s(x0) ∩ TyW
u(x0)) = 1, ∀y ∈ γ0, (3.2.van)

where W s(x0) and Wu(x0) denote the stable (respectively unstable)
manifold of x0;

(iii) DH(y0) 6= 0 for some y0 ∈ γ0.

These hypotheses are robust under perturbations and imply a period blow-up
at γ0; more precisely:

Theorem 4. Under the assumptions (C) we have that γ0∪{x0} forms the limit
of a one-parameter family of periodic orbits along which the minimal period T
tends to infinity as one approaches the homoclinic orbit. �

When the system (3.1.van) is reversible (see Section 1) one has to assume that the
homoclinic orbit is symmetric, and then necessarily also the limiting equilib-
rium is symmetric. Such symmetric homoclinic orbits have a unique intersection
point with Fix (R). Also, if x0 ∈ Fix (R) is a symmetric and hyperbolic equilib-
rium, then both the stable manifold W s(x0) and the unstable manifold Wu(x0)
have dimension n, since W u(x0) = R(W s(x0)). This allows us to formulate our
hypotheses for the reversible case as follows:

(R) (i) the system (3.1.van) is reversible and has a symmetric orbit γ0 (i.e. R(γ0)=
γ0) which is homoclinic to a symmetric and hyperbolic equilibrium
x0 ∈ Fix (R);
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(ii) γ0 is an elementary homoclinic orbit, which means that W s(x0) and
Fix (R) intersect transversely at the unique intersection point of γ0

and Fix (R).

Again these hypotheses are robust under perturbations, and they imply a ho-
moclinic period blow-up along a family of symmetric periodic orbits.

Theorem 5. Under the assumptions (R) we have that γ0∪{x0} forms the limit
of a one-parameter family of symmetric periodic orbits along which the minimal
period T tends to infinity as one approaches the homoclinic orbit. �

The proofs of these theorems as given in [15] is based on a simplified form of
Lin’s method (see [10]); this method has recently become quite popular for the
study of bifurcations near homoclinics (see e.g. the recent work of B. Sandstede).

4 Subharmonic branching

In the foregoing sections we have seen how branches of periodic orbits in Hamilto-
nian or reversible systems can originate at equilibria or terminate at homoclinics.
In this section we discuss some elementary “branching phenomena” which can
occur along branches of periodic orbits; we also describe a reduction result for
mappings (analogous to Theorem 3) which can be used to study such branchings.
For the sake of simplicity we will restrict here to Hamiltonian systems, although
most of the results have analogues for reversible systems (see e.g. [16] for a study
of subharmonic branching in reversible systems).

To start consider a Hamiltonian system

ẋ = XH(x) = J∇xH(x), (4.1.van)

with x ∈ R2n and H : R2n → R smooth. Let γ0 be a given (nontrivial) periodic
orbit of (4.1.van), x0 ∈ γ0 and h0 := H(x0). As described in the Introduction we can
then construct a one-parameter family of (restricted) Poincaré maps

Ph : Σh −→ Σh, (4.2.van)

well defined for h ∈ R close to h0 (see Section 1 for the notations). Fixed points
of Ph correspond to periodic orbits of (4.1.van) close to γ0, periodic orbits of Ph

correspond to so-called subharmonic solutions of (4.1.van), i.e. periodic solutions
whose orbit remains in a neighborhood of γ0 but whose minimal period is close
to an integer multiple of of γ0. So the study of periodic orbits near γ0 leads
to an analysis of the bifurcation of fixed points and periodic points from the
fixed point x0 of Ph0 . The following properties of Σh and Ph are crucial for this
analysis.

Lemma 6. We have for each h near h0 that Σh is a 2(n − 1)-dimensional
symplectic submanifold of R2n, and Ph is a symplectic diffeomorphism. �
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For a proof see e.g. [13] or [19]. Using the classical Darboux theorem (see [1]
or [19]) this Lemma implies that the family of mappings Ph (h ∈ R) can be
identified with a one-parameter family of symplectic diffeomorphisms on a fixed
symplectic vectorspace (V, J) with dim V = 2(n−1); this means that J ∈ L(V ) is
anti-symmetric with respect to some scalar product on V and satisfies J2 = −IV ,
while the diffeomorphisms Ph : V → V are such that

DPh(x)T JDPh(x) = J, ∀x ∈ V. (4.3.van)

In this identification the base point x0 at which we constructed the Poincaré
map corresponds to the origin of V ; hence we have Ph0(0) = 0. The eigenvalues
of DPh0(0) are the nontrivial characteristic multipliers of the periodic orbit;
observe that because of the symplectic structure 1 will always be a multiplier
with at least multiplicity 2. Generically 1 will be a multiplier with multiplicity
equal to 2, and in that case 1 will not be an eigenvalue of DPh0(0) and the fixed
point of Ph0 will persist for nearby values of h. Therefore we can (possibly after
an appropriate translation) assume that

Ph(0) = 0, ∀h ∈ R. (4.4.van)

The fixed point set {(0, h) | h ∈ Rm} corresponds to the branch of periodic
solutions of (4.1.van) which we discussed in Section 1.

Now let us consider the eigenvalues of DPh(0) ∈ L(V ). Setting x = 0 in (4.3.van)
it is easy to show that if µ ∈ C is an eigenvalue of DPh(0) then so are 1/µ, µ̄
and 1/µ̄. It follows that if DPh0(0) has a pair of simple eigenvalues {µ, µ̄} on the
unit circle (i.e. |µ| = 1 and µ 6= ±1), then the continuation of these eigenvalues
stays on the unit circle for all h near h0. Hence we expect to see many values of
h for which DPh(0) has a pair of simple eigenvalues which are roots of unity, i.e.
of the form exp(±2πip/q), with 0 < p < q and gcd (p, q) = 1. This means that
the linearization DPh(0) has q-periodic points, and hence there is a possibility
that in the family of diffeomorphisms Ph we see a bifurcation of q-periodic points
from the fixed point at 0. This in turn would mean that we have bifurcation of
subharmonic solutions near γ0 for our original Hamiltonian system (4.1.van).

We now describe a general reduction result which is very useful in studying
the bifurcation of periodic points from fixed points in families of symplectic map-
pings and which forms an analogy for mappings of what we found in Theorem 3
for vectorfields. The proof can be found in [2], and a similar result for reversible
mappings will be given in [3].

Let (V, J) be a symplectic vectorspace and Φ : V ×Rm → V a parametrized
family of symplectic diffeomorphisms, i.e. we have

DΦλ(x)T JDΦλ(x) = J, ∀x ∈ V, ∀λ ∈ Rm, (4.5.van)

with Φλ := Φ(·, λ) for λ ∈ Rm. We also assume that Φλ(0) = 0 for all λ, and
(taking λ = 0 as a critical parameter value) we set A0 := DΦ0(0). Given an
integer q ≥ 1 we then consider the following problem:



178 André Vanderbauwhede

(Pq) Find, for all small λ, all small q-periodic points of Φλ.

To solve (Pq) we have to solve the equation

Φq
λ(x) = x (4.6.van)

for all (x, λ) near (0, 0). We notice that this equation has an implicit Zq-sym-
metry: if, for a given λ, x ∈ V is a solution of (4.6.van), then so are Φλ(x), Φ2

λ(x),
. . . , Φq−1

λ (x) and Φq
λ(x) = x. The result which follows will make this implicit

symmetry explicit, so that in applications it can be used to simplify the equa-
tions. Let A0 = S0 + N0 be the Jordan decomposition of A0 into its semisimple
part S0 and its nilpotent part N0, and define the reduced phase space U by

U := ker (Sq
0 − I) (4.7.van)

One can then show that S0 is a symplectic linear operator on V , that U is
a symplectic subspace of V , and that S := S0|U ∈ L(U) generates a natural
symplectic Zq-action on U .

Theorem 7. For each sufficiently small λ there exists a one-to-one correspon-
dence between the small q-periodic points of Φλ and the small q-periodic points
of a reduced mapping Φr,λ , where

Φr : U × Rm −→ U

has the following properties:

(i) Φr(0, λ) = 0 for all λ, and DuΦr(0, 0) = S + N , where N := N0|U ;
(ii) Φr,λ is a symplectic diffeomorphism on U , for each λ;
(iii) Φr is Zq-equivariant, i.e. we have

Φr(Su, λ) = SΦr(u, λ). (4.8.van)

Moreover, all small q-periodic orbits of Φr,λ are also Zq-orbits, i.e. they can be
found by solving the Zq-equivariant determining equation

Φr(u, λ) = Su. (4.9.van)

Finally, the reduced mapping Φr can be approximated up to any finite order by
bringing the original mapping Φ into normal form. �

We conclude this section with a brief indication on how the reduction result of
Theorem 7 can be used to prove a classical result of Meyer [11] on the bifurcation
of periodic points in symplectic mappings. Again the details of our approach can
be found in [2]. We take m = 1 in the foregoing and fix some q ≥ 3. We also
assume the following:

(a) A0 has a pair of simple eigenvalues exp(±2πip/q), with 0 < p < q and
gcd(p, q) = 1;
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(b) A0 has no other eigenvalues µ such that µq = 1.

Then dim U = 2 and we can identify U with the complex plane, such that the
reduced mapping Φr given by Theorem 7 now becomes a mapping from C × R
into C. The Zq-equivariance (4.7.van) then takes the form

Φr(e2πip/qz, λ) = e2πip/qΦr(z, λ), ∀(z, λ) ∈ C× R, (4.10.van)

while the determining equation (4.9.van) becomes

Φr(z, λ) = e2πip/qz. (4.11.van)

It was shown in [18] that (4.10.van) implies that Φr must have the form

Φr(z, λ) = φ1(z, λ) z + φ2(z, λ) z̄q−1, (4.12.van)

with the functions φi : C× R→ C (i = 1, 2) such that

φi(e2πip/qz, λ) = φi(z, λ) = φi(z̄, λ), ∀(z, λ) ∈ C× R, i = 1, 2. (4.13.van)

Since Φr is symplectic it is also area-preserving, which in combination with (4.12.van)
and (4.13.van) implies that

|φ1(z, λ)| = 1 + O(|zq|).

Using polar coordinates and assuming some generically satisfied conditions one
can then solve the determining equation (4.11.van). The result is that (4.11.van) has 2q
branches of nontrivial solutions, each parametrized by the amplitude ρ of z, and
of the form

{(ρei(θ∗i (ρ)+2πjp/q), λ∗i (ρ)) | 0 < ρ < ρ0}, (0 ≤ j ≤ q − 1, i = 1, 2)

with θ∗2(0) = θ∗1(0)+π/q, λ∗i (ρ) = O(ρ2) (i = 1, 2) and λ∗2(ρ) = λ∗1(ρ)+O(ρq−2).
So there are two branches of periodic orbits which bifurcate at λ = 0 from the
fixed point at the origin in the family of symplectic diffeomorphisms Φλ (λ ∈ R).

When we apply the foregoing result to the family Ph (h ∈ R) of Poincaré maps
discussed in the beginning of this section we conclude the following: when at some
point along a one-parameter branch of periodic orbits of (4.1.van) the nontrivial
characteristic multipliers satisfy the conditions (a) and (b) (for some q ≥ 3)
then at that point two branches of subharmonic solutions will bifurcate from
the first branch. The higher the value of q, the closer to each other these two
branches will be. The bifurcating subharmonic solutions will (next to the double
multiplier 1) have two multipliers close to 1; along one of the two branches these
“critical multipliers” are on the real axis, along the other branch they are on the
unit circle.
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5 Subharmonic cascades

In this last section we briefly indicate an interesting but still largely open prob-
lem. Consider again, as in the foregoing section, a one-parameter branch of
periodic orbits of the Hamiltonian system (4.1.van). Assume that along part of this
branch there are some simple multipliers on the unit circle. Then there will
generically be an infinite number of points along the branch where some multi-
pliers are roots of unity and where we will have bifurcation of two branches of
subharmonic solutions. At most of these bifurcation points the value of q will
be high, and hence the bifurcating subharmonics will have large periods. Now
concentrate on one such branching point; as indicated at the end of Section 4
the multipliers along one of the two bifurcating branches will be on the unit
circle and close to 1. Hence, applying again the same results, we will find along
this secondary branch an infinite number of points where two branches of sub-
harmonics bifurcate; since the critical multipliers along the secondary branch
are close to 1 the subharmonics bifurcating from this branch will have very high
periods (corresponding to very large values of q). Iterating this argument we
obtain a cascade of subharmonic branchings, all in the same fixed Hamiltonian
system (4.1.van). A similar argument can be given for reversible systems. It leads to
a very rich and complicated structure for the set of periodic orbits of Hamilto-
nian or reversible systems, and it would certainly be interesting to understand
this structure in a more global way.

The methods described in the foregoing sections do not allow such global
study since they are local (near each of the branching points) and they concen-
trate on solutions with a given (approximate) period. One will need a different
approach to answer such questions as: (i) is there any self-similarity in such
cascades? (ii) can one use renormalization techniques? (iii) are there any univer-
sal constants? In some very particular cases (mainly concentrating on period-
doubling) some of these questions have been answered by a number of authors
such as M. Feigenbaum and R. MacKay. In the reversible case there is some
recent contribution by J. Roberts and J. Lamb ([12]). But to a large extend the
problem remains open.
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