EQUADIFF 9

Andrzej Szulkin
Generalized linking theorem and nonlinear equations in unbounded domains

In: Ravi P. Agarwal and FrantiSek Neuman and Jaromir Vosmansky (eds.): Proceedings of
Equadiff 9, Conference on Differential Equations and Their Applications, Brno, August 25-29,
1997, [Part 1] Survey papers. Masaryk University, Brno, 1998. CD-ROM. pp. 159--168.

Persistent URL: http://dml.cz/dmlcz/700264

Terms of use:

© Masaryk University, 1998

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
O stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz


http://dml.cz/dmlcz/700264
http://project.dml.cz

EQUADIFF 9 CD ROM, Brno 1997 PROCEEDINGS
Masaryk University pp. 159-168

Generalized Linking Theorem and Nonlinear
Equations in Unbounded Domains

Andrzej Szulkin

Department of Mathematics, Stockholm University,
106 91 Stockholm, Sweden
Email: andrzejs@matematik.su.se

Abstract. We consider the following three problems: existence of non-
trivial solutions for a semilinear Schrédinger equation in RY, existence of
homoclinics for a first order Hamiltonian system and existence of time—
periodic motions in an infinite chain of particles. The common feature
of these problems is that the associated Euler—Lagrange functional has
the so—called linking geometry and the Palais—Smale condition is not
satisfied.
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1 Introduction

The purpose of this paper is to survey some recent results in the theory of non-
linear differential equations in unbounded domains. Solutions of these equations
will be found as critical points of an associated Euler-Lagrange functional ¢ in
a suitable Hilbert space. We consider three different problems whose common
feature is that @ has the so-called linking geometry and the Palais-Smale con-
dition is not satisfied. To be more specific, in Section 2 we will be concerned
with the problem of existence of a nontrivial solution of the Schrédinger equa-
tion —Au + V(z)u = f(z,u) in RY in a situation when 0 is in a gap of the
spectrum of the operator —A + V and the nonlinearity f is superlinear at u = 0
and |u| = oo. In Section 3 the existence of homoclinic solutions of a Hamilto-
nian system in R2" is considered, and in Section 4 we turn our attention to the
problem of existence of time-periodic solutions for an infinite chain of particles
with nearest neighbour interaction (the so-called Fermi-Pasta-Ulam model). The
arguments presented here are very sketchy. Complete proofs may be found in the
original work to which the reader is referred.

Our starting point is the following generalized linking theorem:
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Theorem 1. Let E be a separable real Hilbert space and suppose that @ €
CY(E,R) satisfies the following hypotheses:

(i) D(u) = L(Lu,u) — (u), where L is a bounded selfadjoint linear operator,
¥ is bounded below, weakly sequentially lower semicontinuous and Vi is weakly
sequentially continuous.

(1) E=Y & Z, where Y, Z are L-invariant and the quadratic form {Lu,u) is
negative definite on'Y and positive definite on Z.

(iii) There are constants b, p > 0 such that ®|ap,nz > b, where B, := {u € E :
Jul < o

(iv) There is zo € Z, ||z0|| = 1, and R > p such that P|logpr < 0, where
M:=={u=y+Xp:y€Y, ||u| <R, >0}

Then there exists a sequence (uy) such that V&(un) — 0 and P(u,) — ¢ for
some ¢ € [b,sup,, P|.

The above result extends linking theorems of Rabinowitz [21,22] and Benci-
Rabinowitz [9,22] (in the first of them Y is assumed to be finite-dimensional,
in the second Vi is compact). Theorem 1 may be found in [19], see also [34].

We would like to emphasize that in the problems considered in the next sections
both Y and Z are infinite-dimensional and V1 is not compact.

2 Schrodinger equation

Consider the semilinear Schrédinger equation

{ —Au+V(z)u = f(z,u), reRN

u(x) >0 as |z] — oo, (2.1)

where V and f are continuous and 1l-periodic with respect to z;, 1 < j < N.
It is known [23, Theorem XIII.100] that under such conditions the operator
—A+V in L?(RY) has purely continuous spectrum which is bounded below
(but not above) and consists of closed disjoint intervals. Intervals (a,b) such that
o(—A+V)NJ[a,b] = {a, b} will be called spectral gaps of —A+V. Let F(z,u) :=
fou f(x, &) d¢ and suppose that f and V satisfy the following hypotheses:

(A1) V is l-periodic in xj, 1 < j < N, continuous, and 0 lies in a gap of the
spectrum of —A + V.

(A2) fis l-periodic in z;, 1 < j < N, and continuous.

(A3) f(z,u)/u — 0 uniformly in z as u — 0.

(A4) There are ¢ > 0 and p € (2,2*) such that |f(z,u)| < ¢(1 + |u[P~1), where
2 :=2N/(N —-2)if N >3 and 2* := +o0 if N =1 or 2.

(A5) There is v > 2 such that 0 < vF(z,u) < uf(x,u) whenever u # 0.

Since f(x,0) = 0 according to (A3), it is clear that (2.1) has the trivial
solution u = 0.

Theorem 2. If the hypotheses (A1)—(Ab) are satisfied, then (2.1) has at least
one nontrivial solution.
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For the proof, we consider the functional

&(u) := l/ﬂ@ﬂVUF—!—V(x)u% dx—/ F(z,u)dz

2 BN

= L)~ y(w)

on the (real) Sobolev space E := H(R"). Since
|f (2, w)] < collul + [ufP~) (2.2)

according to (A3)-(A4), & € C1(E,R) [34, Lemma 3.10] and it is easy to see
that V&(u) = 0 if and only if u is a (weak) solution of the equation in (2.1).
Moreover, it can be shown that v € E and V@(u) = 0 imply u(z) — 0 as
|x] — oo.

To verify (i) of Theorem 1 we observe that ¢ > 0 and v is weakly sequentially
lower semicontinuous according to Fatou’s lemma. Moreover,

(Vip(u),v) = [ f(z,u)vde,

RN

and weak sequential continuity of V4 follows from (2.2) since if uw,, — u, then
U, — uin L2 (RY) and LY (RN).

Since 0 is in a gap of the spectrum of —A + V', F decomposes as a direct
sum of two infinite-dimensional L-invariant subspaces Y, Z such that (Lu,u) is
negative definite on Y and positive definite on Z (cf. [28, Section 9]). Hence (ii) of
Theorem 1. The quadratic form (Lu,u) is positive definite on Z and, according
to (A3), ¢¥(u) = o(||u||*) as u — 0; therefore ¢(u) > b > 0 for u € B, N Z
provided p is small enough. This gives (iii). Since (Lu,u) is negative definite on
Y and ¢ > 0, §|y < 0. Using the fact that p > 2 one can show that & < 0 on the
set {u € M : ||u| = R} whenever R is large enough. Hence also (iv) is satisfied.

Now it follows from Theorem 1 that there exists a sequence (u,) such that
P(up) — ¢ > 0 and VP(u,) — 0. Furthermore, it can be shown that (uy)
is bounded, so u, — u after passing to a subsequence. Since V@ is weakly
sequentially continuous, V@(@) = 0. If @ # 0, the proof is complete. So assume

@ = 0. According to a lemma due to P.L. Lions (see [12, Lemma 2.18], [20,
Lemma I.1] or [34, Lemma 1.21]), if (uy,) is bounded and there exists » > 0 such
that
lim sup / u? dx = 0, (2.3)
N0 geRN J|z—al<r

then u,, — 0 in L*(RY) for all s € (2,2*). Hence either u,, — 0 in LP(RY) or
there exists a sequence (a,) C Z" and r,§ > 0 such that

/ ui dz > 6
lz—an|<r
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for almost all n. In the first case one shows that u,, — 0 in E which is impossible
since ®(u,) — ¢ > 0. In the second one v, (z) := up(x + an) — v # 0 after
taking a subsequence. Since @ is invariant with respect to the action of ZV given
by

(a*u)(z) =ulx + a), weE, acZV, (2.4)

we have @(v,,) = ®(u,,) and V&(v,) — 0, so ¥ is the nontrivial solution we were
looking for.

Theorem 2 and its proof are taken from [19], see also [34]. Earlier versions of
this result, under the assumption that the function F is strictly convex, have been
obtained by Alama and Li [1], and Buffoni, Jeanjean and Stuart [10]. Although
the techniques in [1] and in [10] are very different, in both papers the problem is
eventually reduced to that of finding a critical point of a functional having the
mountain pass geometry. The hypothesis that F' is convex has been removed,
first by Troestler and Willem [33], and then by Kryszewski and Szulkin [19]. An
extension of Theorem 2 has been recently found by Bartsch and Ding [8]. They
considered the situation where 0 is a left endpoint of a gap in the spectrum of
—A+V, ie [0,0]No(—A+V) = {0} for some § > 0.

We would also like to mention the work of Heinz, Kiipper and Stuart, see
[16,28] and the references there, and that of Troestler [32], on bifurcation into
spectral gaps for (2.1) with V() replaced by V(x) — A.

It follows immediately from the periodicity assumptions on V' and f that if
u is a solution of (2.1), then so is a *u (cf. (2.4)) for any a € Z". Two solutions
uy and us are said to be geometrically distinct if a*u; # ug for any a € Z. The
problem of finding the number of geometrically distinct solutions of (2.1) has
been studied by several authors. If 0(—A+V') C (0, 00) (i.e. if the quadratic form
(Lu,u) is positive definite), it has been shown by Coti Zelati and Rabinowitz
[12] that there are infinitely many such solutions. The same result remains true
if 0 is in a spectral gap of —A +V and f(z,u) = W(x)|u|P~2u, where W > 0
and 2 < p < 2* [2]. For nonconvex F it has been shown in [8,19] that (2.1) has
infinitely many geometrically distinct solutions under the additional assumption
that f is odd in u. It seems to be an open problem to decide whether oddness
of f is really needed here.

3 Hamiltonian systems

=(170)

be the standard symplectic 2N x 2N- matrix. In this section we will be concerned
with the question of existence of homoclinic solutions for the Hamiltonian system

Let

2= JH,(2,1), z € R?Y, (3.1)
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Recall that a solution z of (3.1) is said to be homoclinic (to 0) if z #Z 0 and
z(t) — 0 as |t| — oo. Suppose that H(z,t) = Az -z + F(z,1) satisfies the
following assumptions:
(B1) A is a constant symmetric 2N x 2N-matrix and o(JA) NiR = ().
(B2) F and F, are 1-periodic in ¢ and continuous.
(B3) F.(z,t)/|z| — 0 uniformly in ¢ as z — 0.
(B4) There exists v > 2 such that 0 < vF(2,t) < z- F,(z,t) for all z # 0.
(B5) There exist ¢,r > 0 such that |F,(2,t)|> < cz - F.(z,t) for all |z| < r.
(B6) There exist ¢, R > 0 and ¢ € (1,2) such that |F,(z,¢)|? < ¢z - F,(z,t) for
all |z| > R.
It follows from (B6) that

|Fo(z, )] < 61+ [P (3-2)

for some ¢ > 0 and p =q/(¢ — 1).

Theorem 3. If the hypotheses (B1)—(B6) are satisfied, then (3.1) has at least
one homoclinic solution.

Let E := H'/?(R,R?N) be the Sobolev space of functions z € L?(R,R?N)
such that their Fourier transform 2 satisfies

/R (1+ [€2)V22(6) 2 dé < 0.

Then F is a Hilbert space and

O A SRR GG
is an inner product in E. Consider the functional
B(z) = 1/(—Jz'—Az) - zdt—/F(z,t) dt
2 Jr R
1
= 5 (Lz,2) —Y(2).

2
According to (3.2) and (B3), |F.(z,t)] < co(|z] + |2/P~!). Hence using the ar-
gument of [34, Lemma 3.10] and the fact that E is continuously embedded in
L*(R,R?N) for each s > 2 (see e.g. [28, Lemma 10.4]) it is easy to show that

¢ € CYE,R) and V®(z) = 0 if and only if z is a solution of (3.1). More-
over, F,(2(.),.) € L*(R,R?N) for such z. It follows therefore from (3.1) that
z € H' (R,R?N), so z(t) — 0 as |t| — oo. Hence critical points z # 0 of ¢ are
homoclinic solutions of (3.1).

According to (B1), —i&J — A is an invertible matrix and (—iéJ — A)~! is
uniformly bounded with respect to & € R. Hence it follows from Plancherel’s
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formula that L is bounded, selfadjoint and has a bounded inverse. So E decom-
poses as in (ii) of Theorem 1. See [28, Section 10] for more details. In particular,
it is shown in [28] that the spectrum of —J% — A is unbounded, from above
and below, in H'(R,R?V). Therefore (Lz, z) is positive and negative definite on
subspaces of infinite dimension.

Other hypotheses of Theorem 1 are verified in the same way as in the pre-
ceding section. Hence we obtain a sequence (z,) such that &(z,) — ¢ > 0 and
V&(z,) — 0. Moreover, (z,) can be shown to be bounded. The argument is
the same as for the Schrédinger equation and may be found in [7]. The proof
of boundedness makes essential use of (B4)-(B6). Finally, since @ is invariant
with respect to the action of Z given by (a * 2)(t) = z(t + a) (2 € E, a € Z), cf.
(2.4), an application of P. L. Lions’ lemma gives a solution z # 0. Here a remark
is in order: in [12, Lemma 2.18] and [34, Lemma 1.21] the space is H'(RY);
however, a simple adaptation of the argument in [12,34] shows that if (z,) is
bounded in H'/2(R,R?N) and (2.3) is satisfied, then z, — 0 in L*(R,R?N) for
all s € (2,+00).

Theorem 3 for Hamiltonian systems with strictly convex F' is due to Coti
Zelati, Ekeland and Séré [11]. They reformulated the problem in terms of a dual
functional which has the mountain pass geometry. The convexity assumption
has been removed by Hofer and Wysocki [17] and Tanaka [29]. The proof in [29]
is obtained by constructing a sequence of subharmonic solutions of (3.1) and
passing to the limit. A truncation argument is also used there in order to weaken
some of the hypotheses (in particular, in [29] it is assumed that ¢ = 1 in (B6), so
F need not satisfy any growth restriction like (3.2)). An extension of Theorem 3
in a similar spirit as in [8] has been obtained by Ding and Willem [14]. They
allowed A to be t-dependent, 1-periodic and such that [0, 5] ﬂa(—J% —A) = {0}
for some 8 > 0.

It has been shown by Séré [25,26] that if F is strictly convex, then (3.1) has
infinitely many geometrically distinct homoclinic solutions. Recently Ding and
Girardi [13] have obtained a result on the existence of infinitely many homoclinics
for F which is even in z but not necessarily convex. In [7] it will be shown that
the same result remains valid for F' invariant with respect to an action of a more
general symmetry group. Also for Hamiltonian systems it seems to be unknown
whether such invariance condition can be removed if F' is nonconvex.

4 Infinite chain of particles

Consider a chain of particles arranged linearly in a doubly infinite sequence.
Assume that each particle has unit mass and that it interacts only with its
nearest neighbours. Denote the displacement of the i-th particle from its original
position by ¢; and let ¢ denote the potential of interaction. Then the equations
of motion for this chain are

Gi = &' (qi-1 — @i) — ¢’ (@i — qis1), i € Z. (4.1)
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If ¢(z) = %5:52, G > 0, the system is linear and it is possible to explicitly find

normal mode solutions of (4.1), see [31].

Nonlinear systems of this kind (for a finite number of particles) were consid-
ered for the first time by Fermi, Pasta and Ulam in [15]. They wanted to verify
numerically the conjecture that while there is no exchange of energy between
different modes when the system is linear, already a perturbation by a small
nonlinear term causes the energy to be gradually shared by the modes. Contrary
to what they expected, they found that only little energy was shared and the
system returned periodically to the initial state. In a subsequent research Toda
has found that if the force of interaction is exponential, then the system (4.1)
is integrable and there exist both periodic solutions of finite energy and soliton
solutions. See [31] and the references there for more information.

Suppose now that ¢(z) = %ﬁxz + V(z) and B,V satisfy the following condi-
tions:

(C1) g>o0.

(C2) V is continuously differentiable.

(C3) V'(x)/x — 0 as z — 0.

(C4) There is v > 2 such that 0 < 4V (z) < V'(z)x whenever x # 0.

Note that since ¢/(x) has the same sign as x, the potential ¢ is purely at-
tractive.

Theorem 4. If the hypotheses (C1)-(C4) are satisfied, then (4.1) has a non-
trivial T-periodic solution of finite energy for each T > 0.

Let q := {qi}iez, S :=[0,T]/{0,T},
T
@0 =3 [ GORO + @)~ an )00 = piss (1)

gl = (g, q) and

T
E = {q € HY(S', R)” : / Q) dt =0, |q| < oo} .

0

Then F is a Hilbert space and

T T
D(q) := Z %/0 (@ — B¢ — ¢i+1)?) dt — Z/o V(gi — qiy1) dt

1

5 (Lq,q) —¥(q)

is defined on E. Moreover, @ € C!(E,R) and critical points of & are T-periodic
solutions of (4.1) [6]. Note that if ¢ = {¢;} is a solution of (4.1), sois ¢ = {g;+0}
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for any constant ¢ € R. Therefore the condition that fOT qo(t)dt = 0 which
appears in the definition of F is a way of normalizing (4.1) by dividing out the
constants.

Let T € (0,7/+/B) be fixed. Then it can be shown that @ satisfies all hypothe-
ses of Theorem 1. The proof is similar to that in Section 2 but more technical.
Here we only show how the decomposition £ =Y & Z is obtained and refer to
[6] for the other parts.

We first make a side remark that (Lg, ¢) is negative definite if 5 < 0, Lg =0
for all constant sequences ¢ if 3 = 0 and it has been shown in [6] that L has no
bounded inverse if 3 > w2 /T2

Let Y := {qg € E : ¢ = const. foralli} and Z := Y. Suppose T €
(0,7/+/B); then 0 < B8 < ©2/T? and a simple computation using Wirtinger’s
inequality shows that (Lq,q) is positive definite on Z. Clearly, (Lg, ¢) is nega-
tive definite on Y. Hence by Theorem 1 there exists a sequence (¢(™)) such that
&(¢™) — ¢ > 0and V&(q™) — 0. Moreover, it can be shown (¢(™) is bounded,
so we may assume it is weakly convergent. If ¢™) — G # 0, we are done. Other-
wise one shows there is a sequence (i, ) of integers such that if q§") = qu)in +o(m)
then G — G # 0 (¢(™ is chosen in order to have fOT q]g") (t)dt =0). Since @ is
invariant with respect to the action of Z given by (k x ¢;)(t) = ¢irx(t) + ok, a
familiar argument shows that ¢ is a T-periodic solution of (4.1). Moreover, the
energy +(Lq,q) +v(q) is finite.

Suppose T > 7/+/[3; then we can find an integer k such that T/k < 7/+/.
So (4.1) has a T'/k-periodic solution which of course is T-periodic as well.

The special role played by the number Ty := 7//f3 raises the question of
the behaviour of solutions as T Tp. A partial answer may be found in [0]
where it has been shown that if there exist ¢ > 0 and p € (2,4) such that
V(x) > c|z|P, then nontrivial solutions of (4.1) bifurcate at Ty. More precisely,
there exist nontrivial solutions of arbitrarily small energy and L°°-norm, with a
period arbitrarily close to Tj.

The study of chains of particles by variational methods has been initiated by
Ruf and Srikanth in [24]. They considered finite chains with different kinds of
(nonlinear) potential. In a series of papers Arioli, Gazzola and Terracini consid-
ered the infinite chain (4.1) with 8 < 0 [3,5] (potential repulsive for small and
attractive for large displacements) and 8 = 0 [4]. Theorem 4 here is a special
case of a more general result contained in [6]. Finally, let us also mention two
papers, by Smets and Willem [27], and by Tarallo and Terracini [30], on solitary
waves for systems of equations like (4.1).
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