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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE
MATHEMATICA XVII — 1967

ON THE TRANSFORMATION OF LINEAR HOMOGENEOUS
DIFFERENTIAL EQUATIONS OF THE »t* ORDER

Z. HustY, Brno

We call the equation of the following form
(0.1) 3 () ai@) y»D@) = 0, areCy(ly), i=0,1,...,n, azZ0in I,

i=0
a general homogeneous linear differential equation of the n** order. Instead
of ~“homogeneous linear differential equation” we shall call it simply
“equation”.

The equation (0.1) is normal (semi-canonical) [canonical] if ay =1 (a, = 0)
[, =a,=0]. If ajfayeCyl;), =1, 2, ..., n, then we call the equation

(0.2) y™ + f (™) (@i/ag) yn—d = 0

i=1
the normal form of the equation (0.1).
We call two equations quasi-identical if they have the identical range of
definition and the same fundamental system of solution. We denote the
quasi-identical equations by the sign =. F.. (0.1) = (0.2).

1. Perturbated equations.

Let us have the equation
(8) yM@)+ S () ae) yo-a) =0, areCualy), i=1,2, ...,n
i=1

Let u(x) be an arbitrary solution of the equation

(@3 —a;—a})u=0.

" 3
(u) w 1
We call the equation (u) the accompanying equation to the equation (a).
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By (n — 1) fold iteration of the equation of the first order

(L1) Py(y) = vy’ + [a,u* — (n — 1) uu']y =0

we obtain an equation of the n*# order

(1.2) Pu(y) = Py[Pa—(y)] = uzn‘z () [l @y, ap) y=8) =
=0

= uly(y; ay, ;) = 0,
where the function
(13) fg‘(alﬁ aZ)! i = 0: 1, ceey

is for the given » a polynomiai of the elements a,, a, of the dimension ¢, which
we obtain as a solution of a certain difference equation of the first order —
see [1; pp. 39—48]. For instance there is

Sy a) =1, filay, a)) =ay,  [3(6y, @) = ay,
3 ’ 1 » ’
f3(ay, ag) = g T gh + 3a,0, — 3a10, — 20}

We call the polynomial fi(a,, a;) the iterated polynomial of the dimension 1,
the equation (1.2) we call an iterated equation. Let us note yet, that we take
for an iterated equation every equation, which is quasi-identical with the
equation (1.2). )

Put
(1.4) o = a; — fia,, a,), 1=23,4,...,n.

With the aid of (1.4) we can write this in the form

n
@ Inlw; oy, a3) + 3 () 0] g0 =0,

i=3
where In(y; a,, @) = 0 is the normal form of the equation (1.2).” We call
the function w} the coefficient of perturbation of the dimension 7 of the
equation (a), the equation (w) we call the perturbated form of the equation
(a) or the perturbated equation of the equation (a); briefly the perturbated
equation.

The following can be proved — see [1; pp.50]

Theorem 1. The equation (a) is iterated just then when its fundamental system
18 the function

z :
(1.5) un—kypk—1exp {— [ a, ds}, z, €I, k=1,2,...,n,
Zo

where w and v are linearly independent solutions of the equation (u).
The perturbated equation (w) comes in handy for the study of the asymptotic
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and oscillatory properties of the equation (a). We give at least two examples
on the understanding that the equation (a) is semi-canonical in the interval I, =

= {&y, ), i.e. @, =0in I;. Let us put for the sake of simplicity 4 = a.

3
n+1
Example 1. Let the following assumptions hold:
(1.6) AN = 0(1), r=0,1,...,n—35,
f x—28| Axts + ec?| dx < o0, ¢ >0, 8 <

Zo

to| m

, (c,sek), &e=4+1,

[ x2EH-D]ol dr < oo, k=3,4,...,m; 3=0,23,...,n—Fk

Zo

Hence the equation (a) has in the case of ¢ = 1 the fundamental system
exp {f(n — 2v 4 1) 212} [1 + o(1)], v=12,...,m,

in the case ¢ = —1

[sin (Bxl-28)]n—[cos (fx1—28)]'—-1 4 of1), y=1,2,...,n,

where = 1 — see [2; pp. 184].

c
— 28

For s = 0 we obtain the following statement:
Let the following hold: formula (1.6),

[A+etide<w, [loflde<oco, k=34,...,m
Zo To

Then the equation (a) has in the case ¢ = 1 the fundamental system
ectn—2+12[]1 4 o(1)], v=12,...,mn,
and in the case of ¢ = —1
[sin ¢z} —*[cos cx]*—1 -[— o(1), y=1,2,

Example 2. Let o} = 0. If the equation (u) is osclllatory, then every
solution of the equation

(L.7) | In(y; 0, a) + @y = 0,

which has at least one zero point oscillates, too. If n is even, then the equatxon
(1.7) is strictly oscillatory.

We note yet that M. GReGUS dealt in his paper with the properties of the
integrals of the equation ‘

(1.8) In(y; 0, 0) 4+ nwp— Yy + opy =0
— see [21].
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2. Transformation

We denote by the symbol m(l;z) where & s Iz < Iy the set of the elements
which are defined as follows: The ordered pair of functions {7'(z), u(z)} is an
element of the set m(lyz) if

T(x) € Cawi(l1z),  u(x) € Cu(l1z), T'(x) . u(x) # 0 in Iy,
Let us choose an arbitrary element {T'(x), u(x)} € m(l,z). If we put into
the equation (a)
y(x) =u(x) Z(x), t = T(x),
we have the equation

n
@) u(@) [T"(@)]r[2™() + > (F) ault) z=D(E)] = 0, tely = T,z),
i=1

where we put & = T—,(¢) [T—,(¢) is the inverse function to the function 7'(z)],
z2(t) = Z[T~(t)]. We call the equation (a) the imagelof the equation (a) in the
interval I,z with the coordinates}T(x), u(x) and we denote it by the sign (a)
{T(x), w(xz)}. It can be proved that in the interval I,; the following relations
hold

@) = [T'@]* S () a@) P, @], z=To@), i=0,1,...,n,
k=0

where n = T"'[T', { = w'[u are the transformed coordinates of the image
(8) {T(), u(z)} and

@, 0 = S () ¢ () 1-+),
i=k

see [3; 3,1.10]. The function ¢?/ resp. jj-x is the polynomial of the element
n resp. { of the dimension ¢ — j resp. j — k. We obtain both functions
as a solution of certain linear difference equations of the first order — see
[3; (2,1.6), (2,2.3)]. The difference equation which satisfies the polynomial y
is specially simple and therefore we write it here:

x(0) = L0 + [0 2(0) =1

From this follows f.i. x,(¢) = ¢, %(¢) = £%2 4 ¢’, and so on.

We introduce yet some explicit polynomials: ¢@*(n) =1,
m—1 m—2 (3m—5 ,

grm=——g—mn, ¢Fh)="—"—7 ( 1 nz—l-n),

n—-

v
o+

¢(’)‘"(77, =1, ¢?"(’7’ 0) =
opin = — ) 2Bt L L] e ten
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By the symbol o04(I;z) [Pa(l1z)] {ka(l1z)} we denote the set of all images
[semi-canonical images] {canonical images} of the equation (a) in the interval
Iz,

If we choose
n

(2.1) Uz) = c|T'(x)| 2 exp{ fzal ds}, 0#cek,,

then the image (@) {T'(x), U(x)} € 0a(I1z) is semicanonic. As the semicanonical
image is following (2.1) determined by the coordinate 7'(z) we write instead
of (@) {T(z), U(x)} € pa(I,z) in a shorter way (@) {T'(x)} € pa(lyz)-

We call the image (4) {x} € pa(I;) the fundamental semicanonic image or
also the semi-canonical fundamental form of the equation (a).

If we put

(2.2) Ai =3 () arxi-r(—ay), £1=23,...,m, zel, ‘
k=0
then we can write the semicanonical image in the form
n .
A) U,ylx) [Z‘"’(x) + ;2 (?) Ay(=) Z(""”(x)] =0, )
where U,(x) = ¢ .exp {—fa,1 ds}, 0#cek,.

We call the function (2.2) the fundamental coefficients of the equatxon (a).
Let us put

(2.3) fildy) =110, 4,), i=0,1,...,m,
(2.4) I,(Z; 4,) = zo (®) fi(4,) Z(-0),

Q?=Ai—le(A2)’ ‘l=3, 4, ceeg N
There is for instance
fo(dy) =1, 1(4s) =0, J3(4,) = 4,, .

R 9 ., 36Gr+T)
(2'5) f3(A2) - -_2—A2’ f?dl(A2) - 5 A2 -:F 5( + 1) A .
Let us introduce yet the formula (2.4) for n = 3, 4: ,
';I ’ 3 ’
(2.6) Iy(y; 4y) =y + 343y" + “2—4‘12?/'

oy 9 (4
(27) Ly 4y) =y + 64" + 643y + — (Az -+ —§-A§) Y.

Then we can write the normal form of the equation (A) in the perturbated
form ' -
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(@) InZ A) + 5 () Qze-b = o,
i=3
We call the function f}(4,) resp. 2} the fundamental iterated polynomial —
briefly the fundamental polynomial — resp. the fundamental semiinvariant of
the dimeusion ¢ of the equation (a). We call the equation (£2) the perturbated
fundamental semicanonical form of the equation (a) or briefly the perturbated
Sfundamental equation.
We introduce the perturbated fundamental equations of the order 3 and 4

in their most often occurring.arrangements. If we put 4 = %Am Wz =

=m}=d;— %A; we obtain with the aid of (2.5), (2.6) the perturbated
fundamental equation of the 3¢ order in the form
Y+ 24y + (A" + w3)y = 0.
. 3 1 3 4 4 _ 4
If we put 4= -5—A2, 0, = 4oj = 4{4; — ?Az , oy=wow;j=A4,—

[§
———:5)— (A; + —§~ A%) , we obtain with the aid of (2.5), (2.7) a perturbated
fundamental equation of the 4% order in the form
y® 4 104y" + (104’ 4+ w,) y' + [3(4" 4 342) 4+ w,]y = 0,

see £i. [17; pp. 511—3-26, pp. 528—4-11], [20], [11], [7].
Between the functions (2.3) and (1.3) resp. (2.5) and (1.4) hold the following
relations:

i )
f:l(A2) = Z (i) fz(a’ls (”2) Zi—k(—al)i v = 3, 4, ce N,
k=0

i
Z Ic) le{i—k al), 1= 3,4, ...,m,
E=0
see [6; (2.3)].
The semicanonic image (A){T'(x)} € pa(l;z) can be written in the form

A) U@ [T'(x)]”[:‘"’(t)Jr_% () Ai(t) 20-D(t)] = 0, @ = Ty(t), where

(2.8) di(t) = [T" ()]~ Z (;.) Ax(x) Di(n), & = T (), t=2,8, ..., m,
where the functions Ay, L = 2,8, ..., n are the fundamental coefficients of

1 77) and (2.1)

n—

the equation (a), dg=1, 4, = 0, ¥i(y) = PP ( "
holds, see [3; 3, 2.15].
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If the function T'(z) is in the interval I,; the solution of the equation
{T, x} = (3/n 4 1) 4, [the symbol {7, 2} stands for the ScuwaRrz derivative

of the function 7'(z)], then the image (A) {T'(x)} € pa(l;z) is canonical and it
can be written in the form (A) where (2.1), (2.8), 4, = 0 hold and

(n —_— 'i)! ik i—k—o TN, 4.k
TG T 2 1)

(2.9) P = ¢

— see [3; 3, 3.5]. The function F2%F is the polynomial of the element 4, of
the dimension p, which is defined like the polynomial @4 — see [3; 2, 3.4].

If the equation (a) is canonical, i.e. if @, = a, = 0, then the canonical image
(%) {T'(x)} € ka(I;z) is of the form

@ Uylo) [T@P®0) + S ¢ @GO 0001 =0, o =T,0),
i=3

where
1-n

Uy(z) = ¢|T'(%)] 2, 0#cek,, .

i-3
(210) @) = [T'(x)]-f}: [n(@)) (——;—) () (551 #! (@),
v=0

1=3,4,...,m, x = T_().

The function 7'(x) is in the interval I,, the solution of the equation {T, x} = 0,
see [3; 3, 3.6].

We shall introduce yet the perturbated forms of the images of the equation
().

The equation

@) WIMIn ay @) + S ()@ 2-D(0)] = 0,
i=3

where .
@, = (T")~DPY(n, £) + a4,
@y = (1")*[D33(n, £) + 2013(n, £) @y + a,],

105, ) = 3 (D17 (i, ) 200,
Jiay, @) = (T')"‘é0 (}) filay, ap) Pi(n, £), 1=0,1,...,m,
@ = () 3. () R0, 1), i=34,.m,
is the perturbated form of the image (a) {T'(x), u(x)} € 04(I;z). The equation
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Q UT'n[In(2; 4,) + gs(y):f?yz(k~i) =0,

where
4, =(T")- 2[n+1( 772—77) +A2]’

In(z; 43) = 20 + Z @) f(d,) 20,

ﬁ%%4ﬂ4ZM%mhmx

7= (I")~ 123(%) QD (),
is the perturbated form of the image (A) {T'(x)} € pa(I2)-

If the function T'(x) is the solution of the equation {7’} — % 4,
then the equation (Q) is the perturbated form of the canonical 1ma0'e
(@) {T'(z)} € ka(I,z), where we put d; =0, I,(z; 0) = 20,

i—k

=il — &) (T")~ Z AR (n P 2 Z ni—k—eF ik (4,).

e=y
Between the polynomials (2.3) and Fp.i.%(A4,) hold the relations

1 n . .
Zk‘(n_k)!fx(Az)F?ﬁ'kk(Az):0, ’V:O’ l, ._.’@, 123’4, ...’n.
k=0

3. Equivalence

The notion of equivalence is an important notion in the theory of linear
differential equations.

Let us have the equation

()  ZO + 2 OHODO =0,  beCuil), i=1,2...n
1=
and let op(Iy) be the set of the images of the equation (b) in the interval
ﬁ :# Izt (= I 2-
We say that the sets 04(I;2), 05(Iy) are quasi-identical denoted by the sign
(3.1) 0a(I1z) = 0b(Iyt),

if every element of the set 04(I;2) is quasi-identical with one of the elements
of the set op(Iy). The relation (3.1) is reflexive, symmetrical and transitive
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and holds just when at least one element of the set 04(I,2) is quasi-identical
with some of the elements of the set op(ly).

If (3.1) holds, then we say that the equations (a), (b) are in the intervals
1z, I, equivalent and we denote it by

@) Iz ~ (b) Ipe{T(x)},

where 7'(z) is the first coordinate of the image (a) € 04(I,z), which is in the
interval I,; quasi-identical with the equation (b) so that 7'(,z) = I, holds.
We call the function 7'(r) the carrier of the equivalence of the equation (b)
to the equation (a).

The second coordinate u(x) of the image (a) is given by the formula

1—n xr

u(x) = ¢|T"|  exp { J (B4[T(s)] T"(s) — ay(s) ) ds}.

With the aid of the relations (2.10) the necessary and sufficient conditions
for the equivalence of the canonical equations can be proved.

(U.) Zl(")(x) + Z (:}) !Zi(x) y("—“(x) =0, o€ Cn—i(-[l)’ 1= 3, 4, ..., n,
i=3

@ 20+ 3 @)D =0, freCanil) i=34 ..sn.

Let us denote
Vg(0g) = o4

)
(3.2) Dilotgy - . p00) = > (—1)i-1Cig, -0,  {=14,5, ..., m,
r=3

where

y s [rH+r—2) (1 2i — 2 . )
(3.3) 0,.—-( i—1 )(r)/(-i—‘:i—), 7'—3,4,...,2.

The formula (3.2) is quoted in the literature as the formula of BrioscHi,
see [16; p. 197], [18; p. 35], [6; 3.7]. Then holds

Theorem 2. («) Iz ~ () Iy{T(@)} < {BT@), - .., BIT@)]} [T"@)] =
= Plogy ..., 04), 1 =3, 4, ..., n, x € L1z, where T(x) is the solution of the
equation {T,xz} = 0. See [5; 2.1].

The function $i(oy, ..., o;) is the canonical invariant of the equation (x) of
the dimension and weight i. As it is a polynomial of the first order it is also
called the linear invariant.

With the aid of the theorem 2 and with the aid of the relations (2.8),
(2.9) the necessary and sufficient conditions for the equivalence of the equations
(a), (b) can be proved.
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Let us denote
i
(3.4)  ONdy, ..., A) = D CoP™ri—r(A,, ..., Ay), i=3,4,...,1,
r=3

where the constants C} are determined by the formula (3.3) and 2" is
the polynomial of the elements 4,, ..., 4; of the dimension 7, which satisfies
a certain linear difference equation of the first order — see [3; (1.6)]. Then
the theorem 3 holds.

Theorem 3. (a) I,z ~ (b) Iy {T(x)} < OB,[T(x)], . . ., Bi[T'(x)]}. [T'(x)]) =
= ONA,, ..., A7), 1 =3,4, .~ ,n, 2 €1y where Ayresp. By, 1 = 2,3, ..., n
are the fundamental coefficients of the equation (a) resp. (b) and the function
T(x) i3 the solution of the equation

(7,2} + o BT @) (T@) = o Ao
See [5; 3.3].
The function OF(A,, ..., A;) is the fundamental invariant of the equation (a)
of the dimension and weight 3.
The theorem 3 is stated without proof and inexactly in [16; p. 191].
Between the functions w} and @} hold the following relations:

(3.5.) 07 =0, J=384,..,,iw0}=0, J=344...,1%;
t=3,4,...,n.

From these relations follows

Theorem 4. The equation (a) is iterated just then when all its fundamental
invariants are identical to zero.

In [16; p. 204—205) is quoted without proof the theorem of F. BrioscHI
which is a special case of the theorems 1 and 4: If all the fundamental in-
variants of the equation (a) are identical to zero, then the equation (a) has
a fundamental system of the form (1.5).

The first non-zero coefficient of the perturbation of the equation (a) is
a fundamental invariant, which means that if (3.5) holds, then

0%, 0 <= 02,320  “and at the same time — O%,= w%y,.
Theorem 5. Let I, = I,. The equations (a), (b) are mutually adjoint if and
only if the relations
OYB,, ..., B) = (—1)i0XA4,, ..., ), i=34,...,n.
See [10; 1.18].

Corollary: Let (A) {T'(x)} € pa(l1z). The normal form of the equation (A) is
@ self-adjoint equation just when
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n—1
03, (A, ..., d)) =0, v—_~1,2,...,[ 5 ], xel,s.

See [10; 2.9].
From the corollary of the theorem 5. follows this statement: If all the
fundamental invariants with odd indices of the equation

n
s 3 (s

i=2
are identical to zero, then this equation is self-adjoint. This theorem is
mentioned without proof in [16; p. 224] and [18; p. 235].

It seems that it is convenient to introduce the notion of the genus of homo-
geneous linear differential equations.

Let 2 < k£ £ n be a natural number. If

O}A,, ..., A;) =0, j=34 ..,n+2—5k, Oni3-1Z0

(for k = 2 we put O, = 0), we say then that the equation (a) is of the
genus k.
The theorem 6 holds.

Theorem 6. The equation (a) is of the same genus k if and only if the equation

n

n
In(y; a,1a,) + . 23 k(?) wlye=t =0, Wnt3— 7 0, Z =0

i=n i=n+1
is the perturbated form of the equation (a). See [6; (3.1)].

We take note that under the assumption w)£0 resp. wp_,=20 is the
equation (1.6) resp. (1.7) of the genus 3 resp. 4.

From the theorem 5 (corollary) follows that the self-adjoint equation of the
nt? order can be of the genus not higher than (» — 1). The iterated equations
are of the genus 2. The equation (a) is not of a higher genus than 3 if its canoni-
cal image is a binomial equation.

Many of the properties which hold for the equations of the second order
hold also for the equations of the nt* order of the genus 2. It can be expected
that some of the properties of the k** order will hold also for the equations
of the nt® order of the genus k, f.i. see [8].
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