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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE 

MATHEMATICA XVII - 19G7 

PROBLEMS OF OPTIMIZATION OF NUMERICAL MATHEMATICS. 

I. BABUSKA, Praha 

1. Modern computational techniques are putting fonvard new problems in 
numerical analysis. At present numerical mathematics can be considered as 
a set od constructive mathematical methods transforming given information 
into desired ones (see e.g. BABUSKA [I960], HENRICI [1964], BABUSKA , SOBO-

LEV [1905], BABUSKA , PRAGER, VITASEK [1966]). The classic concepts as for 
example that of method are beginning to have new meaning. The first place 
is being occupied by algorithms and the methods are rather comprehend as 
a class of algorithms of certain kind. Concerning algorithms the following 
requirem?nts ariss: 

a) su f f i c i en t genera l i ty of a l g o r i t h m s 

this requires the algorithm to be applicable to a sufficiently wide class of 
problems. For example the algorithm of integration by Cotes' formulae of 
highest order is not sufficiently general as it is applicable only to the narrow 
class of analytic functions. 

h) Su f f i c i en t u n i v e r s a l e f f i c i e n c y ; 

this means that the algorithm should treat the given informations 
,,approximately" as well as the optimal algorithm (see below). 

c) s u f f i c i e n t l y good rea l i zab i l i ty 

By realizability we mean, that the fact, that the computer does not work 
in the field of real numbers (the rounding off) should not have a great effect 
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on the result. Especially this is the problem of numerical stability (see 
BABUSKA, PRAGER, VITASEK [1966]). 

In this paper we will study some aspects concerning the universal efficiency. 
In order to illustrate this problem we will restrict us here only to very special 
cases. 

2. Let a Banach space B be given and let q> e JS*. Our task will be to calculate 
the value q>(f) for a given f s B. The principal idea of (linear) numerical 
methods of calculation of the value of the functional q> is the following. 
A matrix of functional 0 = {q><p}9 j = 1, ..., n, n = 1, 2, . . . , q>^) eB*, 
is given (these functionals will be called calculable functionals). Now it is 

n 

necessary to construct the functionals q>n = y Clpq*<f> in such a way that 
f=i 

9>n(/) -• 9(f) for n -> oo. In practical cases we take q>n(f) « ?>(/)for sufficiently 
great n. There is a number of problems connected with this task. 

1) Problem of the estimate for the upper bound of error. 

Here the upper bound of the quantity sn(q>, q>n, B) = \\q> — q>n\\B* is to be 
estimated. 

This problem bears in fact a classic character and is intensively investigated 
at present (especially it concerns not only the estimate of order, but also of 
the corresponding constants); in the case of integration of periodic functions 
see e.g. SOBOLEV [1965], [1967], JAGERMAN [1966], AGAHANOV [1965], EHLICH 

[1966], BABUSKA [1965], CARUSNIKOV [1966] and others. 

2) Problem of the estimate for the lower bound of error. 

Here the lower bound of the quantity 

r,n(q>, 0, B) = inf \\q> - | afrWl** 

a<B>, k=l, ...,n *-i 

is to be estimated. Also this question is intensively studied at present. See 
e.g. SOBOLEV [1965], [1967], BABUSKA, SOBOLEV [1965], BACHVALOV [1963] 
and many others. The quantity gives the maximal accuracy at obtainable 
on the ground of given information. 
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3) P rob lem of the opt imal fo rmula . 

The task is to construct the functionals <pn in such a way that 

£n{<P, <Pn, B) = 7]n(<p, 0, B) 

See e.g. BABUSKA, SOBOLEV [1965], SOBOLEV [1965], [1967], GOLOMB, W E I N ­

BERGER [1959] etc. The concrete construction of optimal formulae is very 
difficult and is known only in special cases. In connection with these 
difficulties formulae are studied, which are asymptotically optimal or optimal 
by order. See e.g. BABUSKA , SOBOLEV [1965], SOBOLEV [1965]. From the 
point of view of numerical practice the problem of optimal formulae encounters 
some difficulties. Beyond the difficulties connected with the construction of 
optimal formulas there is also the problem of how to choose the space B 
in a concrete case. We will now illustrate the practical importance of this 
problem by a simple example. 

Let <p(f) = ff(x) dx 
o 

n 

Let 0 be a matrix of the functional,such that <pn+i(f) = — / agn)f I — ) 
n 4L-4 . \ n j 

s=-0 
1 

holds. If \\f\\B=f2(0) + f(f')2dx, then the optimal formula will be the 
o 

trapazoid-rule. At the same time it is known, that the trapezoid-rule is 
scarcely used in practice. 

The question of how to lower the risk of choosing the space B in a concrete 
case is the question of universality of the formula. 

4) Problem of un iversal optimality by order. 

Let 21 be a given system of Banach spaces B embedded in a Banach space 
B0. Let us have a matrix of calculable functionals iplp e B% and a matrix 
of coefficients W = {C^)}, j = 1, . . . , n; n = 1, 2, We will use the 
following notation: 

ii?-icw?>iiB* 
m<p = E[BeHl, trl <*C(B)\ 

rjn(<p, 0, B) 

[where C(B) depends on B, <p, 0, W but not on ri\. We will say that the formula 
n 

tpn = y C(p<p(p is universally optimal by order with respect to $1*;*. Further 
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let us have two formulae given by the matrices W% = {fC(tp}, i = 1, 2. . . . 
n 

[i.e. <pn,i = y *C<j V}1)]. We will say that the formula given by with the 

matrix W\ is comparable or better or not worse respect to 91 than the formula 

given by the matrix «/'2, if 91** % 91** or 91** => 91** or 91** j? 9(** 

respectively. The problem of universal optimality lies in 
a) characterization of 21** for a given formula, 
b) characterization of 91 in such a tha t the best formula exist, 
c) construction of an algorithm leading to this best formula and an estimate 

of the quantities r\n and C(B) as functions of B. 
3. In this part we will give some illustrative assertions concerning the universal 

optimality. Let us have the task to calculate a functional over the Hilbert space 
of periodic functions and let us ask, what is (in the intuitive sense) understood 
the concept of this space. I ts intuitive meaning can be perhaps expressed 
in the following manner. 

Definition 1. We will say that a Hilbert space H of 2n-periodic complex 

functions has the property P, if the following properties are fullfiled. 

Px: H is dense in C2,t. 
P 2 : if feH then also g(x) = f(x + c) e II for every real c and \\f\\ = \\g\\, 
P 3 : His imbedded in C2:l. 
Now the following theorem holds. 

Theorem l.1) 

Let H have the property P. Then 
'l)e***eH, k= . . . , - 1 , 0 , 1, . . . ; 
2) ( e to eiix) = 1% for k = i 

= 0 for k -^ I; 

3) f k£* < oo. 
«l=- —oo 

I t is easy to prove also the inverse theorem. 

Theorem 2. 

Let K be the set of all sequences A, A = {. . . , A_l5 A0, .A1? . . . } for which 
Xk > 0, k = . . . , — 1 , 0 , 1 , . . . and S ?^2 < oo. 

Let M be a linear space of all trigonometric polynomials with the scalar product 

(eikx9 eiix) = xi for k = I 

= 0 for k ^ l . 
Let II { denote the complete envelope of M in the given norm; then HA has the 

property P. 

*) I t was M. PRAGER who has drawn my attention to this theorem. 
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Xow we will introduce various systems of spaces with the property P. 
Let 91 be the system of all Hilbert spaces with the property P. 
Let 3lx be of all H x, A e Kx c: K, such that if .J e Kl9 then 
\)h = *-k, k = 0, 1,2, . . . 
2) ;*+i > 4 k > 0 

*»2in-i+^.-+-i):-D"°***4-
D does not depend on n (but depends on A.) 

Let 3l2 be the system of all H u A e 7v2 c: AT
X satisfying. 

h<C+\k\* t fi>0 . 
Xow let 0 = {-,<;>}, j = 1, 2, . . . , 2n + 1, n = 1, 2, . . . 

bo a matrix of calculable functionals and let us turn to tho problem of 
computation of the functional 

1 V 
?(/) =- .>, f /(*) C(x) dr, C(x) e L2 . 

Then the formula becomes2) 

*»(/)= "l* w : ) ^ 
; - i 

Now the question is how to choose the coefficients C^p(^). The following 
theorem holds. 

Theorem 3. 
A necessary and sufficient condition that there should exist such Gty(£)that 

the formula 

9n{f)=*"ilCy{Z)9{V 
y - i 

should be universally optimal by order with respect to 21, is that £(x) should 
be a trigonometric polynomial. The coefficients are uniquelly determined except 
for a finite number of indices n and are given by 

"^—sr+r'iu^ii) 
If £(#) is a more general function, then it follows from theorem 3 that 

2> To simplify formally the following assertions we have restricted us to an odd number 
of points used. 
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a formula, which would be universally optimal by order with respect to 91 
does not exist. In connection with what has been said above the question 
arises whether it is possible to restrict the system of spaces 91 in such a way 
that universally optimal — by — order formula should exist. This is solved 
by the following theorem. 

Theorem 4. 

If C(#) e L2, then *CM(t) exist so that the formula 
2w + l 

1 = 1 

is universally optimal by order with respect to 9li. Except for a finite number 
of indices n, the coefficients are uniquelly determined and ive have 

*0<?> = 2 Í T T S » f e ^ 
+n +oo 

where Sn = ]T dke
ikx and £(x) = ^ d&ikx . 

fc — — n k = —oo 

By theorem 3 and 4 the universally optimal —- by — order formula is 
uniquelly determined. It is clear that should we further restrict the system 
of spaces 9t, then the formula can be determined non uniquelly. In this 
connection the following theorem holds. 

Theorem 5. 

Let £(#) G L2. Then the formula given by theorem 4 is not the only formula 
universally optimal by order with respect to 9l2. 

Returning once more to the formula given by theorem 4 we see that it is 
not optimal in any H e 9lx but is universally optimal by order. It is also 
easy to see that in fact this formula is obtainable by means of the classic 
(interpolation) method using trigonometric polynomials. From this point of 
view the connection between the classic (interpolation) theory of quadrature 
formulae and the theory based on optimization of formulae is well visible. 
But we will not go further in the study of this problem. 

Using the simplest examples, I have given some typical theorems concerning 
the form of the universal optimality by order. This problem can of course 
be substant ia l ly extended to include the problem of calculation of functional 
as well as operators. 

4. In the conclusion let us give some numerical results. Let us compute 
n 

I = f e*sincr cos # d# 
n 

for different values of a. "T 
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As the integrand is obviously a 2:zr-periodic function, / can be written in 

the form 
+ Я 

I = f easina;C(-r)d# 
— a 

where £(x) = cos x for \x\ < — 

£(x) ==-= 0 for --|- < x <, TZ, —n<x< j 

(here we make use of the symetry of / = casina; with respect to the point 

x = d--^-). Now the integrand has the form studied in theorem 4. In the 

following Table together with various formulae the quadrature error is given 
in dependence on the number of vaules of the function e«sin.r (for a = 1, 5, 7) 
used in the calculation. Besides the trapezoid-rule and the Simpson formula 
also the Romberg formula (see BAUER, RUTISHAUSER, STIEFL [1963]) according 
to BAUMAN algorithm [1961] is given under the notation Romberg. Two 
other modified methods are given as Romberg 1 and Romberg 2. The formula 
Romberg 1 is that of Bulirsch—Romberg (see BULIRSCH [1964]) and the 
formula Romberg 2 is that of Bulirsch—Stoer (see BULIRSCH, STOER [1965]). 
The last one is given for comparison although it is not a linearone. 

The computation has been carried out on th3 IGT 1900 w ith a double 
precission of word. 
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1 ï 
X

um
Ы

 
p

o
in

ts
 

1 2 3 4 5 6 

4 0.17 0 
1 

-0.40 -1 0.70 -3 0.19 -2 1 -0.12 0 -0.11 -1 

0 0.72 -1 -0.62 -2 0.20 -5 0.12 -1 -0.11 -1 

8 0.40 -1 -0.16 -2 0.63 -8 -0.85 -5 0.57 -3 0.93 -3 

10 0.26 -1 -0.61 -3 0.11 -10 

12 0.18 -1 -0.28 -3 0.15 -13 -0.15 -3 -0.53 - 4 

14 0.13 -i -0.15 -3 0.15 -16 

16 0.99 -2 -0.87 -4 -0.54 -19 -0.38 -7 0.71 -5 -0.44 -6 

18 0.79 -2 -0.54 -4 0.60 -18 

20 0.64 -2 -0.35 -4 0.16 -18 

22 0.53 -2 -0.24 -4 -0.16 -18 

24 0.44 -2 -0.17 -4 -0.54 -19 -0.12 -6 0.27 -7 

26 0.38 -2 -0.12 -4 -0.49 -18 

' 28 0.32 -2 -0.90 -5 -0.27 -18 

| 30 0.28 -2 ' -0.69 -5 -0.27 -18 
1 o.> 

1 ó-
0.25 -2 I -0.53 -5 -0.54 -19 0.12 -9 -0.70 -10 -0.19 -9 

! 34 0.22 -2 -0.41 -5 -0.16 -18 
i 30 0.20 -2 I -0.33 -5 0.54 -19 

38 0.18 -2 1 -0.27 -5 0.54 -19 * 
40 0.16 -2 | -0.22 -5 0.16 -18 

1 42 0.14 -2 -0.18 -5 0.16 -18 
| 44 0.13 -2 ! -0.15 -5 0.38 -18 
j 46 0.12 -2 -0.12 -5 0.38 -18 

48 0.11 -2 j -0.10 -5 0.16 -18 0.17 -10 -0.76 -12 
50 0.10 -2 | -0.88 -6 0.38 -18 

1 52 0.94 -3 j -0.75 -6 0.38 -18 
i 54 0.87 -3 1 -0.65 -6 0.38 -18 

56 0.81 -3 І -0.56 -6 0.38 -18 
1
 58 0.76 -3 | -0.49 -6 0.38 -18 

! бo 0.71 -3 -0.42 -6 0.38 -18 

62 0.66 -з -0.37 -6 0.38 -18 

l 64 0.62 -3 -0.33 -o 
i 

0.60 -18 
1 

-0.62 -13 -0.13 -12 0.12 -14 

Table 1. The calculation of I for a = 1 according to various formulae. 1) trapezoid-rule, 
2) Simpson formula, 3) ^^niversal formula, 4) Romberg formula, 5) Romberg formula 1, 
6) Romberg formula 2. 



> 
** 

11 1 2 3 4 5 6 

s •«» 

£& 
4 0.98 1 0.37 1 0.20 1 -0.95 0 0.88 1 -0.21 2 
6 0.37 1 -0.12 1 0.11 0 -0.65 1 -0.21 2 
8 0.20 1 -0.61 0 0.51 -2 0.35 -1 -0.39 0 0.15 1 
10 0.13 1 -0.21 0 0.19 -3 
12 0.86 0 -0.84 -1 0.57 -5 0.39 0 0.24 0 
14 0.63 0 -0.41 -1 0.13 -6 
16 0.48 0 -0.23 -1 0.25 -8 -0.26 -3 -0.35 -1 -0.48 -1 
18 0.38 0 -0.14 -1 0.39 -10^ 
20 0.31 0 -0.88 -2 0.51 -12 
22 0.25 0 -0.59 -2 0.55 -14 
24 0.21 0 -0.41 -2 0.49 -16 0.52 -3 -0.56 -3 
26 0.18 0 -0.30 -2 -0.26 -17 
28 0.16 0 -0.22 -2 -0.30 -17 
30 0.14 0 -0.17 -2 -0.26 -17 
32 0.12 0 -0.13 -2 0.00 0 0.22 -6 0.50 -4 0.44 -4 
34 0.11 0 -0.99 -3 -0.13 -17 
36 0.94 -1 -0.79 -3 -0.43 -18 
38 0.85 -1 -0.63 -з 0.87 -18 

40 0.76 -1 -0.51 -3 0.87 -18 

42 0.69 -1 -0.42 -3 0.87 -18 

44 0.63 -1 -0.35 -3 0.22 -17 

46 0.58 -1 -0.29 -3 0.87 -18 

48 0.53 -1 -0.25 -3 0.17 -17 -0.20 -5 0.65 -8 

50 0.49 -1 -0.21 -3 0.22 -17 

52 0.45 -1 -0.18 -3 0.13 -17 

54 0.42 -1 -0.15 -3 0.22 -17 

56 0.39 -1 -0.13 -з 0.26 -17 

58 0.36 -1 -0.12 -3 0.26 -17 

60 0.34 -1 -o.ю -з 0.30 -17 

62 0.32 -1 -0.88 -4 0.87 -18 

64 0.30 -1 -0.77 -4 0.35 -17 0.45 -9 0.23 -7 -0.64 -9 

Table 2. The calculation of I for a = 5 according to various formulae. 1) trapezoid-rule, 
2) Simpson formula, 3) universal formula, 4) Romberg formula, 5) Romberg formula 1, 
6) Romberg formula 2. 
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•f-2 

§•§ 

1 2 3 4 5 6 

! t

 ! 
0.77 2 0.52 2 0.21 2 -0.11 2 0.98 2 0.57 3 

6 0.29 2 -0.39 1 0.21 1 -0.23 2 0.57 3 
8
 i 0.15 2 -0.58 1 0.15 0 0.32 0 -0.19 2 0.22 2 

10 ' 0.94 1 -0.25 1 0.97 -2 

12 0.64 1 -0.99 0 0.52 -3 0.49 1 0.36 1 

' 14 ' 0.47 1 -0.46 0 0.22 -4 

16 i 0.36 1 -0.25 0 0.79 -6 -0.80 -3 -0.79 -1 -0.52 0 

18 0.28 1 -0.15 0 0.23 -7 

20 0.23 1 -0.92 -1 0.56 -9 

22 0.19 1 -0.62 -1 0.12 -10 

; 2 4 0.16 1 -0.43 -1 0.21 -12 -0.40 -1 -0.25 -1 

j 26 0.13 1 -0.31 -1 0.32 -14 

i 28 0.12 1 -0.23 -1 0.24 -16 

1 30 0.10 1 -0.17 -1 -0.12 -16 

32 0.88 0 -0.13 -1 0.52 -17 -0.12 -4 0.26 -2 0.15 -1 

34 0.78 0 -o.ю -i 0.87 -18 

36 0.70 0 -0.81 -2 0.35 -17 , 

38 0.63 0 -0.65 -2 0.11 -16 

40 0.57 0 -0.53 -2 0.95 -17 

42 0.51 0 -0.43 -2 0.61 -17 

44 0.47 0 -0.36 -2 0.19 -16 

46 0.43 0 -0.30 -2 0.69 -17 

48 0.39 0 j -0.25 -2 0.15 -16 -0.60 -4 0.41 -5 

50 0.36 0 1 -0.21 -2 0.21 -16 

52 , 0.33 0 1 -0.18 -2 0.16 -16 

54 0.31 0 1 -0.16 -2 0.17 -16 

56 0.29 0 
!
 -0.14 -2 0.23 -16 

• 58 0.27 0 j -0.12 -2 0.21 -16 

00 0.25 0 -0.10 -2 0.26 -16 

62 0.24 0 -0.89 -3 0.87 -17 

64 

í 
0.22 0 -0.79 -3 0.30 -16 0.29 -7 0.36 -6 -0.37 -7 

Table 3. The calculation of I for a = 7 according to various formulae. 1) trapezoid-rule, 
2) Simpson formula, 3) universal formula, 4) Romberg formula, 5) Romberg formula 1, 
6) Romberg formida 2. 
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