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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE
MATHEMATICA XVII — 1967

PROBLEMS OF OPTIMIZATION OF NUMERICAL MATHEMATICS.

I. BABUSKA, Praha

1. Modern computational techniques are putting forward new problems in
numerical analysis. At present numerical mathematics can be considered as
a set od constructive mathematical methods transforming given information
into desired ones (see e.g. BABuSka [1966], HENRICI [1964], BABUSKA, SOoBO-
LEV [1965], BABUSKA, PRAGER, VITASEK [1966]). The classic concepts as for
example that of method are beginning to have new meaning. The first place
is being occupied by algorithms and the methods are rather comprehend as
a class of algorithms of certain kind. Concerning algorithms the following
requiremz=nts arise:

a) sufficient gellerality of algorithms
this requires the algorithm to be applicable to a suﬁ'iciently wide class of
problems. For example the algorithm of integration by Cotes’ formulae of

highest order is not sufficiently general as it is applicable only to the narrow
class of analytic functions.

b) Sufficient universal efficiency;

this means that the algorithm should treat the given informations
,approximately’” as well as the optimal algorithm (see below).

¢) sufficiently good realizability

By realizability we mean, that the fact, that the computer does not work
in the field of real numbers (the rounding off) should not have a great effect
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on the result. Especially this is the problem of numerical stability (see
BaBUSKA, PRAGER, VITASEK [1966]).

In this paper we will study some aspects concerning the universal efficiency.
In order to illustrate this problem we will restrict us here only to very special
cases.

2. Let a Banach space B be given and let ¢ € B*. Our task will be to calculate
the value ¢(f) for a given fe B. The principal idea of (linear) numerical
methods of calculation of the value of the functional ¢ is the following.
A matrix of functionals @ = {pP},j=1, ..., 0, n=1,2, ..., o@) € B¥,
is given (these functionals will be called calculable functionals). Now it is

n
necessary to construct the functionals g, = > C(Pe() in such a way that

i=1
oa(f) > ¢(f) for n - co. In practical cases we take @,(f) ~ ¢(f)for sufficiently
great n. There is a number of problems connected with this task.

1) Problem of the estimate for the upper bound of error.

Here the upper bound of the quantity ex(p, ga, B) = ||¢ — @allB* is to be
estimated.

This problem bears in fact a classic character and is intensively investigated
at present (especially it concerns not only the estimate of order, but also of
the corresponding constants); in the case of integration of periodic functions
see e.g. SOBOLEV [1965], [1967], JAGERMAN [1966], AcaHANOV [1965], EHLICH
[1966], BABUSKA [1965], CARUSNIKOV [1966] and others.

2) Problem of the estimate for the lower bound of error.

Here the lower bound of the quantity

n
Na(p, P, B) = inf llp — > e[ g*
@, k=1,...,n k-1

is to be estimated. Also this question is intensively studied at present. See
e.g. SOBOLEV [1965], [1967], BABUSKA, SoBOLEV [1965], BAcHVALOV [1963]
and many others. The quantity gives the maximal accuracy at obtainable
on the ground of given information.

16



3) Problem of the optimal formula.

The task is to construct the functionals ¢, in such a way that

en(@s n, B) = nale, @, B)
See e.g. BABUSkA, SoBOLEV [1965], SoBoLEV [1965], [1967], GoLoMB, \WEIN-
BERGER [1959] ete. The concrete construction of optimal formulae is very
difficult and is known only in special cases. In connection with these
difficulties formulae are studied, which are asymptotically optimal or optimal
by order. See e.g. BABUSKA, SoBOLEV [1965], SoBoLEV [1965]. From the
point of view of numerical practice the problem of optimal formulae encounters
some difficulties. Beyond the difficulties connected with the construction of
optimal formulae there is also the problem of how to choose the space B

in a concrete case. We will now illustrate the practical importance of this
problem by a simple example.

Let olf) = [ @) da
0

n

Let @ be a matrix of the functional,such that g, +,(f) =

3[.—-

2. (3)

1
holds. If [|fllF = f%(0) + [ (f)*dx, then the optimal formula will be the
0

trapzzoid-rule. At the same time it is known, that the trapezoid-rule is
scarcely used in practice. _

The question of how to lower the risk of choosing the space B in a concrete
case is the question of universality of the formula.

4) Problem of universal optimality by order.

Let A be a given system of Banach spaces B embedded in a Banach space
B,. Let us have a matrix of calculable functionals ¢() € BY and a matrix
of coefficients ¥ = {CP}, j=1, ..., n;n=1,2, ..... We will use the
following notation:

n
llp — 3 CPoP||pe
A%e = E[Be Y, i=1 < C(B)]
v 77"(?” ¢’ B)

[where C(B) depends on B, ¢, @, ¥ but not on n]. We will say that the formula

n
gn = > CPg( is universally optimal by order with respect to U%?. Further
j=1

2 Equadiff II. 17



let us have two formulae given by the matrices ¥; = {{C(M}, i =1, 2

[i.e. @n,i = ﬁ ICMe@]. We will say that the formula given by with the
i=1

matrix ¥, i; comparable or better or not worse respect to U than the formula

given by the matrix ¥,, if AP? 2 ALP or ARP > ALe or AP = A2,

respectively. The problem of u111vc1sal optlmallty lles in

a) characterization of UA%¢ for a given formula,

b) characterization of 9 in such a that the best formula exist,

c) construction of an algorithm leading to this best formula and an estimate
of the quantities 7, and C(B) as functions of B.

3. In this part we will give some illustrative assertions concerning the universal
optimality. Let us have the task to calculate a functional over the Hilbert space
of periodic functions and let us ask, what is (in the intuitive sense) understood
the concept of this space. Its intuitive meaning can be perhaps expressed

in the following manner.

Definition 1. We will say that a Hilbert space H of 2m-periodic complex
Sfunctions has the property P, if the following properties are fullfiled.

P,: H is dense in C,,.

P,: if fe H then also g(x) = f(x + ¢) € H for every real ¢ and ||f]| =

Py: His tmbedded in C,,.

Now the following theorem holds.

Theorem 1.V
Let H have the property I’. Then

1ekzreH, k=...,—1,0,1,
2) (etkz, etlz) = A2 for k =1

=0 fork #]I
3) z Az < oo,

It is easy to prove also the inverse theorem.

Theorem 2.

Let K be the set of all sequences A, A= {..., A-y, %9, Ay, ...} for which
Aa>0k=...,—1,0,1, ... and T 232 < 0.

Let M be a lmear space of all trigonometric polynomials with the smlar product

(etkz, ellr) = A2 for k=1

=0 fork#1.

Let H  denote the complete envelope of M in the given norm; then H, has the

property P.

1 It was M. PRAGER who has drawn my attention to this theorem.
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Now we will introduce various systems of spaces with the property P.
Let 2 be the system of all Hilbert spaces with the property P.

Let U, be of all H, A € K, = K, such that if .1 € K, then

DWoh=rhy k=012 ...

=k k=0

»n

N 22[an]
ST s S , 0= a< 4
8) L am) £ 1@n 4+ ) =D V=2=
=9
D does not depend on » (but depends on .1.)
Let 2, be the system of all H,, .1 € K, © K, satisfying.
< CH+ Ik, B>0.

Nowlet &= {p®}, j=1,2,...,2n+1, =12, ...

2 .

be a matrix of calculable functionals and let us turn to the problem of
computation of the functional

2.r
) =, @) ) dn, @) ely.

Then the formula becomes?

‘_’u:l .
wlf) = S COC) gD

i-1
Now the question is how to choose the coefficients C()(;). The following
theorem holds.
Theorem 3.

A necessary and sufficient condition that there should exist such CP()that
the formula

2n+1
galf) = 2 CPE) P
i=1
should be universally optimal by order with respect to U, is that {(x) should

be a trigonometric polynomial. The cozfficients are uniquelly determined except
Jor a finite number of indices n and are given by

1 2x .
*OM) —= — -~ — —_—— -
ce 2n+lg(2n—i—1‘7)

If {(x) is a more general function, then it follows from theorem 3 that

2 To simplify formally the following assertions we have restricted us to an odd number
of points used.

RAJ
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a formula, which would be universally optimal by order with respect to A
does not exist. In connection with what has been said above the question
arises whether it is possible to restrict the system of spaces 2 in such a way
that universally optimal — by — order formula should exist. This is solved
by the following theorem.

Theorem 4.
If {(x) € Ly, then *C(L) exist so that the formula
2n 41
ea(f) = > *CPE) o
i=1

8 universally optimal by order with respect to N,. Except for a finite number
of indices n, the coefficients are uniquelly determined and we have

1 2n
*Om — i
cq 2n+1Sn(2n+l])

+n +oo
where Sp = z dret*z  and {(x) = Z dyetkz |

k=-n k=—o0

By thcorem 3 and 4 the universally optimal — by — order formula is
uniquelly determined. It is clear that should we further restrict the system
of spaces 2, then the formula can be determined non uniquelly. In this
connection the following theorem holds.

Theorem 5.

Let {(x) € L. Then the formula given by theorem 4 is not the only formula
universally optimal by order with respect to U,.

Returning once more to the formula given by theorem 4 we see that it is
not optimal in any H € UA; but is universally optimal by order. It is also
easy to see that in fact this formula is obtainable by means of the classic
(interpolation) method using trigonometric polynomials. From this point of
view the connection between the classic (interpolation) theory of quadrature
formulae and the theory based on optimization of formulae is well visible.
But we will not go further in the study of this problem.

Using the simplest examples, I have given some typical theorems concerning
the form of the universal optimality by order. This problem can of course
be substantionally extended to include the problem of calculation of functionals
as well as operators. ‘

4. In the conclusion let us give some numerical results. Let us compute

4+

o a

I = e sin z cos z dx

~

|
K]

for different values of a.
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As the integrand is obviously a 2z-periodic function, I can be written in
the form

I = f+ ’;a sin z [(x) dz

where {(x) = cos for |x] < —721

n
{x) =0 for%gzgn, -—ngx_<_——2-

(here we make use of the symetry of f = e®inz with respect to the point

x = ;{:%) Now the integrand has the form studied in theorem 4. In the

following Table together with various formulae the quadrature error is given
in dependence on the number of vaules of the function esinz (for a = 1, 5, 7)
used in the calculation. Besides the trapezoid-rule and the Simpson formula
also the Romberg formula (see BAUER, RUTISHAUSER, STIEFL [1963]) according
to Baumaw algorithm [1961] is given under the notation Romberg. Two
other modified methods are given as Romberg 1 and Romberg 2. The formula
Romberg 1 is that of Bulirsch—Romberg (see BuLirscuH [1964]) and the
formula Romberg 2 is that of Bulirsch—Stoer (see BuLirscH, STOER [1965]).
The last one is given for comparison although it is not a linearone.

The computation has been carried out on th> ICT 1900 with a double
precission of word.
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v

Number of

2 1 2 3 1 5 6
£
| 2
! ‘
4 017 0 -0.40 -1 076 -3 | 019 -2 1 -0.12 0 | -0.11 -1
6 0.72 -1 -0.62 -2 0.26 -5 012 -1 ! -0.11 -1
.8 040 -1 | -0.16 -2 | 063 -8 | -085 -5 | 057 -3 | 093 -3
v 10 026 -1 ' -0.61 -3 ! 011 -l0 ‘
|12 0.18 -1 -0.28 -3 | 0.1 -13 -0.15 -3 | -0.53 -4
14 0.13 -1 -0.15 -3 | 0.15 -16
. Ui} 099 -2 | -0.87 -4 | -0.54 -19 | -0.38 -7 | 0.71 -5 | -0.44 -6
18 0.79 -2 ! ~0.54 -4 ' 0.60 -18
20 0.64 -2 + -0.35 -4 0.16 -18
| 22 l 0.53 -2 -0.24 -4 | —0.16 -18
V24 7 0.44 -2 -0.17 -4 | -0.54 -19 -0.12 -6 | 027 -7
26 | 0.38 -0.12 -4 | -0.49 —18
"o 032 -2 | -090 -5 | -0.27 —18
| 30 0.28 -2 ' -0.69 -5 | -0.27 -18
32 0.25 -2 | —0.53 -5 | ~0.54 -19 | 0.12 -9 | -0.70 -10 | -0.19 -9
| 54 022 -2 | -0.41 -5 | -0.16 -18
36 ) 0.20-2 |, -0.33 -5 0.54 —19
38 0.18 2 | -0.27 -5 0.54 —-19
l 4 | 016-2 | -022 -5 | 0.6 -18
L4z 014 -2 | -0.18 -5 | 0.16 -18
| 44 013 -2 ' -0.15 -5 0.38 -18
i 46 012 -2 ' -0.12 -5 0.38 -18
|48 0.11 -2 { -0.10 -5 0.16 -18 0.17 -10 | -0.76 -12
50 0.10 -2 | -0.88 -6 0.38 -18
| 50 094 -3 | -0.75 -6 | 0.38 -18
I B4 0.87 -3 ‘ -0.65 -6 0.38 -18
' 56 | 08L-3 | -0.56 -6 0.38 -18
' 58 0.76 -3 | —0.49 -6 | 0.38 -18
| 60 0.71 -3 | -0.42 -6 0.38 18
' o62 0.66 -3 ’ —0.37 -6 | 0.38 -18
I 64 0.62 -3 | —0.33 -6 0.60 -18 | -0.62 -13 | -0.13 =12 | 0.12 -14
: 1
Table 1.

6) Romberg formula 2.

The calculation of I for « = 1 according to various formulae. 1) trapezoid-rule,
2) Simpson formula, 3) universal formula, 4) Romberg jformula, 5) Romberg formula 1,
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)

22 1 2 3 4 5 6

3§

7 &
4 0.98 1 037 1 | 020 1| —095 0 | 08 1 | -0.21 2
6 037 1 | —0.12 1 | 011 0 -0.65 1 | —0.21 2
8 020 1 | —061 0 | 051 -2 | 035-1 | —0.39 0 | 015 1
10 013 1 | 021 0 | 019 -3

12 086 0 | —084-1 | 057 -5 039 0 | 024 0
14 063 0 | —041-1 | 013 -6

16 048 0 | -0.23-1 | 025 -8 | -0.26 -3 | -0.35 -1 | —0.48 -1
18 038 0 | —0.14-1 | 039 -10

20 031 0 | —0.88 -2 | 0.51 -12

22 025 0 | -0.59 -2 | 0.55-14

24 021 0 | -0.41 -2 | 0.49 -16 0.52 -3 | —0.56 -3

26 018 0 | —0.30 -2 | —0.26 -17

28 0.16 0 | —-0.22 -2 | -0.30 -17

30 014 0 | -0.17 -2 | -0.26 -17

32 012 0 | —013-2 | 000 0| 022-6 | 0504 | 0444

34 011 0 | —0.99 -3 | —0.13 -17

36 094 -1 | —0.79 -3 | —0.43 -18

38 085 -1 | —0.63 -3 | 0.87 -18

40 076 -1 | —0.51 -3 | 0.87 -18

42 0.69 -1 | —0.42 -3 | 0.87 -18

44 063 -1 | -0.35-3 | 0.22-17

46 0.58 -1 | —0.29 -3 | 0.87 -18

48 053 -1 | —0.25 -3 | 0.17 -17 -0.20 -5 | 0.65 -8

50 049 -1 | -0.21 =3 | 0.22 -17

52 045 -1 | -018 -3 | 013 -17

54 042 -1 | —0.15-3 | 0.22 -17

56 039 -1 | —013-3 | 0.26 -17

58 0.36 -1 | -0.12 -3 | 0.26 -17

60 034 -1 | -0.10 -3 | 0.30 -17

62 032 -1 | -0.88 -4 | 0.87 -18

64 030 -1 | —0.77-4 | 035-17 | 045-9 | 0.23-7 | -0.64 -9

Table 2. The calculation of I for o = 5 according to various formulae. 1) trapezoid-rule,
2) Simpson formula, 3) universal formula, 4) Romberg formula, 5) Romberg formula 1,
6) Romberg formula 2.
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Number of

2 1 2 3 4 5 6
R
&
! |
L4 0.77 2 052 2 | 021 2 | -011 2 098 2 0.57 3
6 0292 | -039 1 021 1 -0.23 2 0.57 3
8 | 0152 . —058 1 015 0 032 0 | -0.19 2 022 2
10 0941 | -025 1 0.97 -2
12 0641 , -099 0 | 052 -3 0.49 1 0.36 1
14 ' 0471 | -046 0 | 022 -4
16 i 0361 025 0 | 079 —6 | -0.80 -3 | -0.79 -1 : -0.52 0
18 ;| 0281 ! -015 0 | 0.23 -7
20 l 0.23 1 -0.92 -1 0.56 -9
22 0.19 1 -0.62 -1 0.12 -10
bo2g 0.16 1 -0.43 -1 0.21 -12 -0.40 -1 -0.25 -1
| 26 l 0.13 1 -0.31 -1 0.32 ~14
| 28 | 0121 | -0.23 -1 0.24 -16
| 30 ; 0lo1 -0.17 -1 | -0.12 —1¢
32 0.88 0 -0.13 -1 0.52 -17 | -0.12 -4 0.26 -2 0.15 -1
34 0.78 0 -0.10 -1 0.87 -18
36 0700 | -0.81 -2 | 0.35 -17
38 0630 -0.65 -2 | 0.11 -1¢
40 , 0570 -0.53 -2 | 0.95 -17
42 0.51 0 -0.43 -2 | 0.61 -17
44 0.47 0 -0.36 -2 | 0.19 -16
.46 0430 | -0.30 -2 | 0.69 -17
© 48 0390 | -0.25-2 | 0.5 -16 -0.60 —4 0.41 -5
50 0.36 0 -0.21 -2 | 0.21 -16
52, 0330 -0.18 -2 | 0.16 -16
54 0310 | -016-2 | 017 -16
56 0.29 0 | -0.14 -2 | 0.23 -16
.58 0270 | —0.12-2 | 021 -16
60 0250 . -0.10 -2 0.26 —16
D62 0.24 0 -0.89 -3 | 0.87 -17
. 64 0.22 0 -0.79 -3 | 0.30 -16 0.29 -7 0.36 -6 -0.37 -7
i
Table 3. The calculation of I for o = T according to various formulae. 1) trapezoid-rule,

2) Simpson formula, 3) universal jormula, 4) Romberg formula, 5) Romberg formula 1,

6) Romberg formula 2.
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