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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE
MATHEMATICA XVII — 1967

ON THE EXISTENCE AND REGULARITY OF SOLUTIONS
OF NON-LINEAR ELLIPTIC EQUATIONS

J. NEGAS, Praha

Introducetion. We shall consider boundary value problems for elliptic
equations of order 2k in the divergent form
> (—1)"D{ay(x, DIu)] = f(x)
lilsk ' .
where D! is the well-known symbol for derivatives in Euclidean space
Ey : Dt = o'tl)oxhs ... ox\iv. We shall deal with the problem of existence
of weak solutions using direct variational methods and for them the regularity
theorems will be derived. In the conclusion the converse process will be used
for investigation of existence of regular solution.
Contents: §1 Weak solution of the boundary value problem. Its determinig
by the variational method.
§2 Regularity of the solution; application of differences method.
§3 Regularity of the solution; on the Holder continuity of k-th
derivatives. ,
§4 The existence of regular solution. Application of the first
differential.

§1. Weak solution of the boundary value problem. Ifs deter-
mining by the variational method.

Let 2 be a bounded domain in Ey with Lipschitzian boundary 0Q. Let us
denote by E(22) the space of such real-valued infinitelly differentiable functions
on 2 that can be continuously extended (with all their derivatives) to the
closure of 2 : 0. D(®) is a subspace of E(X2) which contains all functions
with compact support.

Let &k > 1 be an integer, 1 << m < 0. Let W{¥(£)be anormed space of all
real-valued functions which are integrable with m-th power over 2 and so
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do all their derivatives (in the sense of distributions) up to the k-th order.

The norm of w is ||u|lw{k = ( [ > | D*u(x)™ dx)l/m, Let us denote I?’S,’;"(Q) =
a9 la|=k
= D). !

Let C®)(2) be a space of all real-valued functions which are continuous
with all their derivatives up to k-th order on £ with usual norm and let
C®).1(Q2) be subspace of C*)(Q) of these functions whose k-th derivatives are
p-Holder continuous.

We shall define functions as(x, {y), |{| < kforx e, —o0o < {5 < oo, |j| <k
continuous in variables ¢; for almost every x and measurable as functions
of z for {; being fixed. Each positive constant will be denoted by C. To
distinguished the constants, if it is necessary we shall use indices. Let us

assume

(L) e, G <O+ 3 [GImh), 1<m<oo

lilsk
. 1 1 E— i . . 1 ) .
orless: we set ——=—— if(k—i))m < N, —=0if(k — [7])m >
wm v (k — [¢]) a (k —[3])
> N’lell—> 0if(k— [i])m=N. For 1 <q<ooletq =7!—q—1, ity =
p —

= ?Iq,ﬂ'—- and let C(s) be continuous non-negative function for 0 << s < o0. Let
14
gi € Ly (2), g1u1(x) = 0. Let us suppose

(1.2) &gz, &) < O ( 5 > 1%l) (9i(=) + > (am).
(

)<k—N[m k—N/ms|f|<k
The following assertion is valid: the operator a;(x, D/u) is continuous from
WE(Q) into Lg'1;1,(2). Its proof is based upon imbedding theorems for W{)(Q2)
spaces. (See, for instance, E. CAGLIARDO [10] and also M. M. VAINBERG [28].)

Letnow be D(2) = 9 < E(RQ), V = 9 in WH(2) and let Q be such Banach

0
space that D(2) = @ and that W{(Q) < @ algebraically and topologically.
Let u,e W¥(Q) (stable boundary condition), g € V' such functional that

gv=20 for ve Igfgk)(Q) (unstable boundary condition), and fe @’ (the right-
hand side) be given. Let us denote gv = (v, goq, fv = <{v, [ g A

Definition of the boundary value problem and of weak solution: We are
looking for such u € W{#(2) that

(13) % —uye I%’ﬁ,’,"(!?),

(1.4)  for each ve V: [ 5 Divay(x, Diu) dx = {,>g + <v, g>q.
2 1Sk

Thus, boundary value problem (1.3), (1.4), we shall transfer to the problem
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of finding a minimum of certain functional &(v). There are many other
aspects the problem can be approached. Thus, many authors have dealt with
the existence of the solution of boundary value problem using the concept
of ““monotone operators” which we shall use further. (See, e. g. F. E. BROWDER
[2], [3], M. I. Vifixk [30], J. LErAY, J. L. Lio~s [17]...) We shall obtain
similar results; the difference is that we shall suppose certain additional
condition concerning symmetry of the operator. But we shall know that
certain functional has minimum in our solution. If the functional is a priori
known then further considerations are analogic to those in papers: F. E.
BrowbpER [6], M. M. VAINBERG, R. I. Kadurovskis [29]. See also the book
by S. G. MicHLIN [18].

The condition of symmetry: Let d be the number of indices with lenght
|| <k, ¢ € D(Eg). Then (1.5) holds almost ewerywhere in £:

0 0
(15) (=1 [ R t) b = (=11 [ a0 dz.

There is proved in author’s paper [20] (using the formula for integration
of differential, see M. M. VAINBERG [28]):

Theorem 1.1. Let the conditions (1.2) and (1.5) be satisfied. Then
1'
(1.6)  D(v)= [dt [ > Diwayx, Diuy + tDiv) dx — v, frg — {v, 9)0q
: 0 2 L=k
is continuous functional on V; its Gateaux’ differential is

D(v + T? = 20) _ [ S Disay(e, Diug + Div) dz —

Q lijlsk

(1.7) D®(v, v) = lin;
- <5’f>4) - <7;1 g>aﬂ'

To prove the existence of minimum @(v) on V, we shall investigate the
conditions under which the following relations hold:
(1.8) lim @@) =0
o]l w¢r>oo

(1.9)  D(v) is weakly lower-semicontinuous.

If v is the point of minimum of ®(v), then DP(v, v) = 0, which is (1.4).
Differential (1.7) is said to be totally monotone (strictly totally monotone)
ifforallv, weV, v # w,

(110) [ > Diw — v) [ai(x, DIuy + Diw) — ai(x, Diuy + Div)] dz >0, (> 0)
2 ik
holds.
We shall say that the differential (1.7) is coercitive if for allve V
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(1.11) [ > Diay(x, Dlug + Div) dz = (||| wik) holds

Q i<k

where A(s)/s € L,(0, R) for every R > 0 and lim = f lgs) ds — 0.

R—)oo

There is proved in author’s paper [20].

Theorem 1.2. Let (1.2), (1.5), (1.10), (1.11) be satisfied. Then there exists
min @(v) (D(v) is defined by (1.6)), namely, in the point v. Function v 4 u,
is the solution of problem. If the condition (1.10) of the strict monotony is satisfied,
the solution is unique. In this case D(vy) - D(v) = vy, — v (weak convergence).

Let us remark that (1.11) is satisfied, e.g. if 4, = 0 and

Z Ciag(x, &) = C z [Ce™ 4 C . [£(0s0++-0) /™.

lif<k li/=k

If
[ lzk (&1 — mi) . [au(=, &) — ailz, 77)] =0
is

then (1.10) is satisfied e.t.c. See author’s paper [20].

Let us write the operators ai(xz, Diu) in the form a;(x, D*u, D3u) where
the symbol D*u denotes a vector of derivatives with |«| = k and Dfy a vector
with || < k.

We say that the main part of the differential (1.7) is monotone if for v,
w,weV
r2)y (3 Di(w — v) [ai(x, D*uy + D*w, Duy + Diw) —

2 =k
— ay(x, D*uy + D*v, Dluy + Diw)]de >0

holds.

Let us investigate the conditions under which the functional (1.6) is weakly
lower-semicontinuous. For this we need monotony of the highest derivatives
[see condition (1.12)] and strengthened continuity which is to be locally
uniform regardig the derivatives D*u.

Sufficient conditions for this are following:

Let ¢(s), d(s) be continuous functions for 0 < s < o0, non-negative, d(0) = 0
and assume |

(L13) i = & : |as(, Loy £3) — ailr, Eoy )] < s
<cmax( > & > ngl)) - [4( z 1€ — mpl) -

|Bl<k—N|m |1Bl<k—N|m |Bl<k—N/m
(4 > Gt + > ICal* 1§53 — mal# 1BI],
le| =k la]l =k,k—N/ms|8l<k
where 0 < )5 < qa1° m—1-1 . Let
‘ m

104



(l 14) a‘i("’: bas C,ﬂ’) = z Qaa’h(’v, 5,3) + a'l(x, 193)
la| =k

m
hold for |i| < k. Let a;,5£ 0 at most when ¢y > ——7 - Let us suppose

(1.15)  ag,(x, z,)]<c( Sl -1+ > € al%31)

|Bl<k—NIm E-NIm<Z|Bl<k
(m —1)q —m

where 0 <, ; < -
= m . q4

.q); and

(L16) aw, E)l <c( S 1Ll (@@+ > I,

|8l<k=N[m k—N|m<|BI<k
where gi(x) =0, g; € Lg%, and qﬁ] >q'i| if k— Nim < |il; gy =1 if |i] <

<k — N/m. TFurther xf, , <4 ¢ l
14

We can prove (see again [20]).

Theorem 1.3. Let the conditions (1.2), (1.5), (1.11), (1.12), (1.13), (1.14),
(1.15), (1.16) be satisfied. Then there exists a minimum of (1.6); let us denote
it v. Function v + u, is the solution of problem.

Let us remark, that

X17) 3 (& — ) - (@@, &, $g) — au(@, 70, £3)] = O
6=k

is sufficient for the validity of (1.12).

§2. Regularity of the solution; application of differences method.

E. Horr in his article [14] and many other authors have used this method
to prove the regularity of solution of non-linear second order elliptic equations.
Thus it is possible to obtain properties of k - 1-st derivatives. Author doesn’t
know how to apply this method, if it is possible, when investigating regularity
of the derivatives of £ + 2-nd and higher orders (as for the nonlinear elliptic
equations in general form).

We shall assume, that functions a;(z, {;) are continuously differentiable for

x €0, —o0 < {; < oo and we denote ay(x, {,) = day W (x, ;). Assuming m > 2,

we restrict ourselves to the followmg conditions (see [20]):
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(e, Sl < elgT I;‘;[TI, [i| = |j] = k&,
e, Ll <ol 4 S e, i<k, 1= ks

le| <k
analogically for [i| =k, [j| <k,
lay(@, L)l <e. (14 > [Cal™~ 2, il <k jl <k
|2 <k

> ey, L) &by = > [Gm2E,

lil =i =k li|=k

@ o m_ m )
T @ ) e (LT (1 + S (6a%) for il =k,
|

la, <k

2.1) |

(@

< C( Z [Calm—l)
x| <k

or to the conditions

.

|@is(, C)ISMH—ZZ?P , lil=1jl=Fk d =0,
|a| =k
m 1

@i, C)ISCd+ZC24 T+ S

|| =k lal <k

and analogically for [i| <k, |j| = £k,
oz, Ll <e (14 S ¢2)T  for [i| <k, |jl <k,

m_
!

1
L=k ljl<k

(2.2) W2k
a@d+ S ) 15(@ il L) Bl < cy(d + S LHT I
o=k ey I =k
S X L P
oy | WS ’
da: 01 20 T7L s
’3—— SC(I + Z Cz) (1 + Z Ca) ,» il = k.
Tl laf =k laf <k

Let us denote by o(z) an infinitely differentiable function which is equivalent
with dist (x, 92) and which satisfies |Dis| < ¢.ol-lil. (Existence of such
function is proved by author in [22].)

We shall consider smoothness of the solution in 2, not in 2. We shall
assume that the right-hand side satisfies an inequality

|
l WEoQy =6

where W{#(2) is the dual space to ﬁ"z’“)({)).
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Applying the standard differences method (see e.g. J. NECas [21]) we
obtain

Theorem 2.1. Let u € W{H(Q), m > 2 be the solution of problem (1.3), (1.4).
(Generally we do not suppose (1.5).) * Let (2.1), (2.3) also be satisfied. Then

N
2%k (3 i %)2(1
Jor 2, > (g olt) de <o

1=1 li|=k
and thus (N = 3):
2kN_ mN_
(24) [ > o2 . |Diy|¥-2 dx <c¢ <o,
Q i<k
(2.5) [ S o%p|Durde <Cp< o0, 1<p<oo, N=2
2 i<k

Similarly the next theorem is valid:

Theorem 2.2. Let u € W(Q), m > 2 be the solution of problem (1.3), (1.4)
(Generally we do not suppose (1.5).) Let (2.2), (2.3) also be satisfied. Then the
inequalities .

N m\ 2
fov. § (Lra+ 3 0urt) er=o<o,
2 =1 4 laf =

[o®.[d+ ¥ (D“u)z]?nl. > (Dw)dr<c<w
a4 | =& ‘ lil=k+1
and (2.4), (2.5) hold.

Analogical assertion is valid if we set > ¢2 instead of > (7 in (2.2).
lel <k |la} =k

If k = 1 (the equation of second order) we can weaken our requirements.
Let us denote functions a;(z, {;) by symbols: ay(z, u,p), i =1, 2, ..., N)

o
a(x, u, p), where p = (py, ..., PN), D1 = 3_:; and let »(s), u(s), #1(s) be non-

. A»
negative functions for 0 < ¢ <co. Let us denote [p| = ( > p?)t2, Let us
i=1

assume

V(Iul) (1 + |pl)m-2. Z £< Z a (2, u, p) &1ty <

.1-

(2.6) |
3“1

=1

N
< ullul) . (1 + I3 8%
z( -I-lazl) a+ioh+ 5 |2
i=1 i,j=1

| <up(lul). 1+ [pl)ym, 1 <m <o
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N
[ S ax L@, u, p)l (1 (x, u, p)‘ 1+ Ipl) +
k=1
(2.7) + |3@7(x’ u, p)l u, p)! < wy(lul) . (1 4+ |p))™,
1 <m<o0.

Let w e W(Q) be a weak solution satisfying the next condition: for each
@ € D(2) the equation

(2.8) f(Zat(xup) (p—i-a(x'up) p)dz =0

holds. Then the next assertion holds (see O. A. LaApvZENSKAJA, N. N. URAL-
CEVA [16]):

Theorem 2.3. Let u € W(2), 1 <m < oo be the weak solution satisfying
(2.8), let sup |u(x)] < co. Let (2.6) and (2.7) be valid. Then for Q' = Q
x e

¥ 2u \?
) ’ -2 ’
(2.8) J 1 + |p|)ym i.]zﬂ ( prn ij) dz < ¢(2') < oo holds.

If k=1, wye(C%R) and if we consider the Dirichlet problem we can
substitute 2 for 2’ in Theorem 2.3 when 22 in sufficiently smooth. (See
[16].)

Analogical results concerning the solution of the variational problem for
the functional [ f(z,u,p)dz (as Theorem 2.3 and following) proved C. B.

Q

Morey [19]. Let f(z, , p) be a function which has two Hélder continuous
derivatives according to each variable and let the inequality

(29) Cy(1 + u? + |p|?)? — Cs < f(x, u, p) < Cp (1 + u? + |p|2)?
be satisfied for 1 << m << c0.
Furthermore, let u, € W{/(2). Let us look for such

N

0
(2.10) e WR(RQ), u — uye WH(Q),
that

ox
The solution u satisfies Euler equation in the weak form: for ¢ € D(£):

(2.12) f(% ;| 3 (:v,’up)—-l—(paf (, u,p))dx—()

Let us denote% = ai(z, u, p), 3f (x, u, p) = a(x, u, p).
i

(2.11) ff (x, u, —al) dr is minimal.
Q

108



Let

0 0
mmuwn+g§Mumﬂ+mmumn+%%wAmﬂs

m 1

<C(l +u?+ [p?)? &

eay oa | -1
213) | [ |t 7] SCA+ @+ 1217
O +u+pl?)? 3 HE< 3 o @up) s =<
i=1 ij=1 %D

m

<C1+w+pr S 8
i=1

be satisfied. (Comp. with (2.2).) Then (see C. B. MoreyY [19]):

Theorem 2.4. If we W(I(Q2), m > 2, u satisfies (2.12) and if the conditions
(2.13) are satisfied then (2.8)" holds. If 1 << m << 2 then there exists u satwfymg
(2.12) such that (2.8)" holds again.

See also E. R. BuLEY [6].

§3. Regularity of the solution; on the Iélder continuity of
k—th derivatives.

Under the assumptions of the Theorems 2.1 or 2.2 we have (3.1) for the
weak solution and ¢ € D(2)

(3.1) f Z aiy(x, D*u) Di(ij - dx =

Q2 lil.lil<k

=~/ 3%

Q lil<k

3“‘ Gy (@ D) Dipdz + <<p,i> ,1=1,2 ..., N.
oxy / g

Thus if we denote w = —g—— then w is a weak solution of linear differential
o)

equation. The investigation of regularity of higher derivatives is based upon
(3.1) and upon regularity theorems for the linear equations. In this section
we restrict ourselves to the assumptions (2.2) with d = 1. Simple example
can be given to exhibit that conditions (2.1) do not guarantee continuity of
k + 1-st derivatives in 2 in spite of the analyticity of functions a;(z, {;), f(x).
(See J. NECas [20].)

If & = 1 then (3.1) yields further information if we set ¢ = —;% by v? y €
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€D(Q), s =0, by(x) = min (|p|%,n), n=1, 2, ... (p — the comparison
function). See e.g. O. A. LADYZENSKAJA, N. N. UrRaLcEvVA [16]. The com-
parison function

B2) ¢= dﬁ w peD(@Q), s >0,
dn-mm {(l +u2 4 |p|?),n}, n=1,2, ...

has been used in E. R. BULEY’s paper [6] under assumptions (2.9), (2.13)
and m = 2. The same function has been used by C. B. Morey [19] but with
8 < 0. From this the boundedness of the first derivatives on every Q' <

< ' < Q can be obtained when s -c0. (See E. R. BuLey [6], J. NECas
[21].) If

(3.3) sup |p(z)] < O(2') < 0

is proved and if (2.8)" holds then jTu = wis a weak solution of linear equation
1

with bounded and measurable coefficients on £’ according to (2.1). When

k =1 we can use DE GIORGI’s result (if g— = 0 see [12]) or more general
1
) o Of
result of G. StampaccHIA |if T # 0) [27]:
1

Theorem 3.1. Let u € Wi(£2) be a weak solution of the equation: for ¢ € D(82),

fz LA 6xt al'j f of dv + fz 0x; fi

7

N N

where f € Ly(Q2), fi € Ly(R), p >3 6 € L, (92), z ay&ig; > C|&|2, then
t,i=1

there exists such 0 < u <1 that

|u]ldOk @y < C(RQ") (I1fl Lo+ Z I1fillLepey + IIUHW(”(m), QcQ

holds.

The proof of Holder continuity for higher derivatives and (for k¥ = 1 of
the analyticity of solution) follows e.g. by the result of A. DoveLis, L. NIREN-
BERG [9] (or by results of E. Hopr [14]). We shall formulate the results:

E. R. BuLEy [6]:

Theorem 3.2. Let k = 1, m > 2, let u be the solution of (2.10), (2.11) and let
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the assumptions (2.9), (2.13) be satisfied. Then (3.3) holds and there exists
0< p<1 that

(3.4)  ||ullcV(Q") < C(2') < o0 holds.

Applying C. B. MorRrEY’s result the Theorem 3.2 can be obtained for such
w» which satisfies the condition (2.12). Furthermore, this author obtained:

Theorem 3.3. Let k = 1, 1 < m < 2 and otherwise let all assumptions of the
preceding theorem be satisfied. Then there exists such solution of the problem
(2.10), (2.11), that (3.1), (3.4) hold.

0. A. LADYZENSKAJA, N. N. URALCEVA:

Theorem 3.4. Let v e WI(RQ), 1 < m < oo be a weak solution which satisfies
the condition (2.8). Let sup |u(z)] < oo and let (2.6), (2.7) hold. Then (3.3),
x e

(3.4) hold.

The inequality (3.3) was essential in proof of regularity of the solution for
k = 1. The inequality (3.1) (¥ = 1) has been considered by many authors
that generalized the result of T. RApo [26] under essentially weaken assump-
tions (supposing that Q = Q’, 0Q is smooth and @ is strictly convex). (See
e.g. P. HArRTMAN, G. STAMPACCHIA [13], D. GiLBARG [11].)

Now let us consider ¥ > 2. The use of the comparison function of the
type (3.2) does not lead to any result and the information
(3.5) sup > |Diu(z)] < C(Q') <o

z €2 i<k

is not available. Accordingly, we shall consider the case m = 2 or we shall
suppose that (3.5) holds. Thus we transfer the problem of regularity of k-th
derivatives to the linear problem.:

Let Ay be a real matrix of bounded measurable functions in a domain O,
|i| = |j] = k. We shall use the following assumptions:

(3.6) CillIP<< > Aulily < Colll?
lil=lil=%k
(3.7) Ay = Ay
Function w € W{(0) is a weak solution of the equation ~  D!(4yDiw) =
lil=ljl=%

=l > Dify with f; € Ly(0), if for each ¢ € D(2)
i =k :

(3.7) f z AyDtoDiw dx=é[ z Digf; dz.
0 lil=lil=¢ lil=k

Further let us denote O d = {z € 0, dist (x, ¢0) = d}, B(zy,r) = {x, |z —
— %ol <7}. For 0 < A< N let £@3(0) be such subspace of L,(0) that
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sup (¢ [ fe)de)=||fIlL(0) < oo,
1o €0,0>0 B(xg, @) N O
For the properties of these spaces see, e.g. S. CaAMPANATO [7].

Applying S. CAMPANATO’s method [7] whose generalization for the equation
of higher order has been given in the paper [15] of J. KaADLEC and J. NECas,
we obtain the following:

Theorem 3.5. Let w be a weak solution satisfying (3.7)'. If (3.6), (3.7) and if

1 3G
N . logs— % Co
C,
. 1 — 21
38) 1= % >N—2
(. 130 ’
24C, T 40,
log C. + log T o,
C,
(3.9) fie LEH(04), d >0
are satisfied then we obtain
i _ . Ait2—N
(W10 &-0u@a) < C@) 3 Il 0 omas 1 = ==

(3.8) is always satisfied for N = 2. For N >3 it holds when the positively-
definite matrix E'L Ay 1s sufficiently near (uniformly on O) to the unit matrix
2

in the sense of (3.8). The constant A s absolute.

The Theorem 3.5 is — in certain sense — an analogy of the Theorem 3.1
for k > 2.

If '
(3.10) [l 4ylle <C <
holds, then (see [15]):

Theorem 3.6. Let w be a weak solution satisfying (3.7)" and let the assumptions
(3.6), (3.10), (3.9) with A > N — 2 be satisfied. Then

A+2—N
[|lw|[ctt-moay < C(d) MZ_katllg(“’ ©dls b= —i—z—l- holds.

Replace <<pi, %> 0 in (3.1) by the expression b[ |i|z=k Dig % dx where

3.12) [ > g(_af_‘)za%dx<oo.

2 li=k 1= \07;
Further let us suppose that (2.2) is valid and (for technical reason)
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(3.13) a;=0 for Iil < IC, %E 0 for 'jl < k, aip = ;.
According to Theorems 2.2, 3.5, 3.6 we obtain (see J. NECAs [23]):

Theorem 3.7. Let u € W& (2), m = 2 be a solution of the problem (1.3), (1.4)
and let the assumptions (2.2), (3.12), (3.13) be satisfied (the comstants C1, C,
have the same meaning as before). Then we have
(@) if m=N=2 and

o,
(3.14) > i “1

Y <Cd* d>0
W=k (=107

P2 »4) (2g)

then ||u||c®: 2(9.;) < Od- "" , (A is taken of (3.8))

(b) if m >2, N =2, (3.5) has the form sup |§ | Diu(x)|? = Ag < Cyd—
x € Qg |i|=k

and if (3.14) with

m
— 390 4 oaT
2.log 2 —
1—g, (14 Cd~)'"T
v 2 2‘ud = 3 C m
1 —-—1(1 + Cyd—2) "7

m
log 24 % (1 4 Cyd—)' "% 4 log —0
2 o S+ Cd-o)t-7

is valid then ||u||lc®a(Q;) < % d-k—na,

(¢) f m=2, N =3, —2—:—; = 0, (3.8) is valid with the constants C,, Cy from

(2.2) and if (3.14) with A from (3 8) is sat@sﬁed then -
] = (@) < 04T,
d) if m =2, N > 3 and (3.5) in the form :1:% Ialzk ID’u(x)[“’ < C,is satisfied,
further if (3.8), (3.14) with
3 C,

- 4 O, (1 =+ 03)
N log 0
—Fa+0)”
A= 2
3¢C 3
11— ”4——‘1 1+ 03)
log 2A (1 + 03) + log 0
g 1-F
L- G+
8 Equadift IT.
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s valid then HuHC(’")’ (Qd) < 0d™ k_—
(e) ifm =2,N =2, ||u||c(k) (g) g 0 and if (3.14) with A > N — 2 isvalid then

lulle® 5 (3a) < Ca~*"7.

§4. The existence of the regular solution. Application of the
first differential.

Let 2 be a bounded domain with infinitely differentiable boundary o£.
Let ay(x, iy, t) be real functions with the same meaning as in section §1, defined
for |i| < k continuous on @ y(—o0 < {; <) x(0 < ¢t < 1) and continuously
differentiable in {;, ¢ and let ay(x, 0,0) = 0. Using the same notation as

. . Ea;
above i.c. a;; = 3,
lay(®, Lo, 1) — @iy, N4, 1) <
<0y( 2t +1nD) . (o =yt + 2 1ta—nal)

we suppose

and the same for da;
(4.1) et

@i5(@, Las 1) — @is(Y, Nas £1) + Qi3(Y; Mas t2) — @is(@, &y, b)) <
<G ( 2 16l + I ol — 6o —yi 4 2 1 = wal,

and the same for -a—q—i

ct

where C,(s) is a non-negative continuous function for 0 <s <00, 0 < p <1
and w(s) is continuous function for 0 << 8 < o0, w(0) = 0.
Let us assume further

(+.2) Cy ( lzklnml)lél2 = _le[_kau(x, Tas ¢) Gl

where C,(s) is a continuous positive funetion for 0 <<s <oo. Further let
fie COn@), |i| <k, uye C®.1(Q). Let us denote by C’(“:“( Q) the subspagce

olu
of C®).(Q) whose elements are functions for which Tl = =0on 02,1=0,

1, ..k — 1. (The derivation in the direction of exterior normal.) We look
for such weak solution of the Dirichlet problem w« € C®).#(Q) that

(£3)  u — uye CW(@)
(4.4) for each pe D(Q) [ Ilz Digayw, Diu,1)dz = [ O Digfidx
Q i<k :

Q i<k

Let the functions by(z, D, t), |i| < k, |j] < k be continuous on @ X —oo <
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<{g<o X0t S 1 continuously differentiable in {;, ¢, 0i(z, 0,0) = 0.
cbs

64;‘  and assume that by, = 5
Roughly speaking, we shall solve the problem (4.3), (4.4) as follows: We
<hall look for such curve u(t), 0 <t <<1 with its values in C®.#(Q) that
u(t) satisfies the problem (4.3), (4.4) with tu,, tf;. For this curve we shall

Let us denote by = satisfy the conditions (4.1).

obtain a differential equation 3—7 = N[t, u(t)] and we shall look for such

solution that «(0) = 0. See J. NECas [24] see also F. E. BROWDER [4]. Thus
instead of solving the problem (4.3), (4.4) we look for a mapping u(t, t) with
adomaint=0,0<t<1,t=1,0<7t<1and a'range in C*®).»(Q) which

is continuous with its derivative %lf (¢, 0) from 0 <t <1 to CW.(2) for

7 = 0. (The case when a;(x, {j, t) does not depend on ¢ is of great importance.)

Further we require

(£.5)  ult, 7) — tug € CBn(@),

(1.6) @eD@Q): ﬂflilz Digay(x, Diu,t)dx + (1 — 1) !;iék Digby(x, Diu, t)
de =t f Digfi da.

ltl <k

Further let us assume that for ||u||cmm(;,) < R < o the following holds:

if we WH(Q2) and (4.7) holds for every ¢ € D(22):

(+.7) f| . g ay(x, D*u, t) DipDlw dz + f > by(x, D*u,t) DigDhwdx =0
Q lillij<k lilli| <k

then w== 0. This assumption implies the existence of only one element (for

llu]|c®(2) < R, if B < ) we C®»(Q) for which

(4.8)  w — upe C®1®)

(4¢.9) for peD(Q): f atj(x, D=y, t) DigDiw dz +
Q2|

—l—/ Z bij(x, D*u, t) DipDiw da: =— f Z (—aai; (z, D*u, t) +

2 liLlii<k 2 i<k
abt (x, D=y, t)) Dip dzx + f ? fiDip dz is valid.
Q ,t] <k

It follows e.g. from the article by S. AeyoxN, A. Doueris, L. NIRENBERG
[1] or from J. KapLEC, J. NECAs [15].

Let us denote by w = N(u, ¢, fi, uy) the mapping that assigns to a function
% € C®).+(Q) from the sphere ||u||c®)"(5;) < R, to the parameter ¢ from (0, 1),
to the elements f;, |i| < k and to the element u, the function w. Now, we

8+ 115



have for a function we (OJ'(k),M(??), which is a weak solution of the equation

> ay(x, D*u, t) Dig Dwdx + [ D, by(x, D*u, t) DigDiy dz =

Q2 fillil<k Q2 [illi<k

Q |il<k

that there holds:

(4.10)  |lo|| ¢®-*@) < O] |ullc® (@), p) M.Zk [Gallc®" ()

where Cy(7y, 75) is continuous and positive function for 0 < 7 <oo0, 0 <
< 715 < 1. According to this it follows:

(a) The mapping N (u, ¢, fi, 4,) is locally Lipschitzian: for ||u||c®)*(g) <
<R <o, =12 RBR<R, 0<t<1, ||fille®™*qm) < B, <oo,

(4.11) ; %ol lc®#(5) < R, thereis ||w; —w,||c®(@) < C(Ry, By) |0y — gl |c®4(@),

(b) N is continuous as the mapping , ¢t »> w,
(c) N is coutinuous in f;, u, uniformly with respect to ||u||c®).#(gG) <
<R, 0<t<1.

For v = 0 we have: if u(t, 0) is a solution of the problem (4.5), (4.6) for
0<t<eandif 0 <e <1, ||u(t, 0)||c®G) < R then

(4.12) %?; (£, 0) = N(u(t), ¢, fi, up), 0 <t < e, u(0,0)=0
holds and thus

t
(4.13)  u(t, 0) = 0f N(u(s), s, fi, up) ds, 0 <t < e.

Now, using the standart method based upon the theorem of contraction,
owing to the validity of (4.11) we obtain the existence of the solution of
(4.13) for some interval <0, &), ¢ > 0; if there is such solution for some interval
{0, &), € < 1 then it also exists for the interval

<0, &, l1>¢ >e
We assume that u(f, 0) is such solution on the interval {0, &> and that
(4.14)  ||N(u(t), t, fi, uo)llc®"(@) < F(llu(@)llc®*@)

holds for ¢ € €0, ¢), where F(s) is continuous and non-decreasing function‘ for
8 €{0,00), F(0) > 0. Let y(t) be the solution of Cauchy problem y(0) = 0,
y'(t) = F(y(t)). Evidently the following holds: -

(4.15)  [|u(®)llc® @) < y()-
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But (4.15) implies the existence of the solution of (4.13) wherever y(¢) is
defined, i.e. for 0 <t < ¢, where

(4.16) &< f F(z)

According to this we have
Theorem 4.1. Let the assumptions (4.1), (4.2), (4.7) with R = oo be satisfied
and let by(z, Cj,t) = 0. Then there exists a solution of the problem (4.3), (4.4) if

f F(?z) > 1. Otherwise there exists a solution of the problem (4.5), (4.6) for efy,

F(,l( 2 If an a priori estimate ||u(t)||c®*(z) g%< o0 8
known (u is a solutwn of (4.5), (4.6)), where R is from (4.11) then there exists
a solution of the problem because it is possible to set F(z) = const.

eu, where &£ < f

If there exists a function from (4.14) with f > 1 uniformly with respect

F ( )
to some meighbourhood of fi, u, then the solutwn %(1,0) is continuous in fi, u, in
this neighbourhood.

Theorem 4.2. Let the assumptions (4.1), (4.2) and the following condition (4.17)
be satisfied:

If > llgillc®-@) < C, uy being fived, u(t, 0) is an eventual solution for

i<
(4.17) tug, tgi, then there exists such continuous non-negative function R(a)

that ||u(t, 0)]|c®g) < R(a) and (4.7) holds with 2R(a).

Furthermore let the “a priori” estimate ||u(1, t)||c®)-#) < o kold for uy, f;being
fized. Then there exists a solution of the problem (4.3), (4.4).

Actually, according to the preceding theorem, our problem has a solution
if v = 0 (for considered u, and arbitrary g;) constructed above. (It is possible
to guarantee the existence of this solution also under different assumptions,
see the preceding theorem.) Let A(g;) be this solution. Let us consider the
mapping A(f; — thi(x, Dlu, 1)) from (0, 1> x CH®#@Q) to CH®.»Q) for 0 <
<t < 1. This mapping represents homotopy of compact transformations
and the mapping 4 — wu is different from zero on the boundary of the sphere
B,, = ||u||c®)#(5) < 20. Now, for the degree of mapping with respect to O
and to the sphere in question we have

d[A(fi — bi(x, Diu, 1)) — u, 0, BZQ] = d[A(fi) — «, 0, B, )] = —

Hence there exists the solution of our problem. See J. CroNIN [8].
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