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ACTA FACULTATIS RERШI NATURALIШI IШVERSITATIS ГOMEXIANAE 

ЭIATHEMATICA XVII - 1967 

INVESTIGATION OF T H E SOLUTIONS OF D I F F E R E N T I A L 
EQUATIONS ON AN I N F I N I T E INTERVAL AND T H E F I X E D 

POINT THEOREMS 

M. SVEC, Bratislava 

The fundamental question which is to solve in the theory of the differential 
equations is the question of existence. I t can be solved by various methods, 
chosen following the made assumptions and the expected properties of the 
solution. I n the last time the methods based on the theorems of the fixed 
points seem to very efficient. Those theorems serve a s ' a very important 
and convenient way, and we can state t h a t they are the most elegant, for 
the proof of the existence of the solution determined for instance by the 
initial conditions (not only for the proof of the local existence, but also of 
the existence in large). Then there are boundary-value problems, the linear 
problems, the problems of the existence of the periodic or almost periodic 
solutions, the existence of bounded solutions, of monotone solutions or of the 
solutions having other required properties. In all this problems the theorems 
of the fixed point have been used with a great succes. I could quote a very 
long list of the works concerning with those problems (to begin with the 
works of G. D. B I R K H O F F , 0 . D. KELLOG, R. CACCIOPOLI, SCHAUDER, LERAY 

to the last works of KRASNOSELSKI, B R O W D E R , CESARI, H A L E , U R A B E , 

KNOBLOCH, CONTE, KAKUTANI, LASOTA, OPIAL, HAIMOVICI, B I E L E C K I , COR-

DUNEANU and others). 

I will consider the theorem of SCHAUDER and indicate some of the variants 

which are very convenient especially in the case when the existence of solu­

tions is to be proved with the required properties in an infinite interval. 

We find the theorem of SCHAUDER quoted in the literature essentially in 

two forms of what the following form seems to be more convenient for 

application: 

Let M be a convex and closed set of a Banach space. Let T be a continuous 

operator on M such t h a t TM c: M and TM is (relatively) compact. Then T 

has a t least one fixed point in M. 

In utilizing this theorem one takes for M generally the closed sphere which 
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is evidently a convex set. Then there are three things to prove: The continuity 
of T on M, the transformation of M by T in itself and the compactness of 
TM. It is chiefly the compactness which gives many difficulties. I t can be 
proved often by use of the theorem of Arzela, but this theorem requires that 
the domain of the definition of the functions of TM be bounded. If this 
domain is not bounded, it is possible to use the theorem of HAUSDORF of the 
existence of the e-net. 

In the following lines J will consider the cases where the interval of the 
definition of the functions of TJil is not bounded and / will show, in using 
the notion of the quasiconvergence, how to evade the difficulties which can 
arise. In the first place / shall try to explain the ideas on a concrete Banach 
space and to prepare everything in order to their application in the dofferential 
equations of the n-th order. 

Let An-X be the set of all functions which have, on the interval J, the 
continuous derivatives till the order n — 1 inclusively. 

I must give some definitions. 
Dv Let fjc(x), h = 1,2, . . . , be the functions of An-V We will say that the 

sequence {/#(#)} converges quasi-uniformly (or shortly q-converges) to the function 
f(x) on J, if for every x eJ and i = 0,1, . . . , n — 1, lim fk^(x) = f(f)(z). 

k-»oo 

We write fa —-> / . 
I t is evident that every subsequence of a sequence which g-converges to 

f(x), (/-converges to f(x). 
D2. Let Sn-X be the Banach space of all functions of An-V which have the 

bounded derivatives till the order n — 1 inclusively. The norm is given by the 
formula 

\\f(x)\\= max {sup |/«(*)|}. 
0£i<n-l J 

It is easily to shown that the convergence in this norm implicates the 
g-convergence, and that is essential for us. 

D3. The infinite set M c: #M-i is said to be q-compact in Sn-X if every sequence 
extracted from M contains a subsequence q-convergent to a function of Sn-V 

It is to be noted that the limit of a ^-convergence sequence of ,SW_X ought 
no to be of Sn-V 

D4. We will say that the set M cz Sn--i w q-closed if the following implication 
holds: {fkeM,fk -X / } => {feM}. 

D5. We will say that the functions of the set M c: Sn-t are uniformly bounded 
on J by a number K, if \f^(x)\ ^ K for every x e J, i = 0, 1, . . . , n — 1 and 
for every f(x) e M. We will say that the functions of M are equicontinuous on 
J if holds: for every e > 0 there exists d(e) > 0 such, that for every f(x) e M, for 
i = 0,1, . . . , n - 1 and for \x - x'\ < d(e) holds: \f«)(x) - / W ( s ' ) | < e. 
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It is easy to prove [2]: 

Lemma 1, If the functions of an infinite set M <r Sn-1 are uniformly bounded 
and equicontinuous on J, then M is q-compact in Sn-V 

With the help of the (/-convergence we can define the (/-continuity of an 
operator T on Sn-X (or on a set M c: Sn-X). 

D6. An operator T on Sn^ into Sn-X (on M into Sn-i) is q-continuous on 
Sn-X (on M) iff the following implication holds: {fk —>/, fk, feSn-x} => 
=> {\\Tfk - Tf\\->0for k ->oo}, ({fk -4 / , fk, feM} => {\\Tfk - Tf\\ -> Ofor 
k -.>oo}). 

The (/-continuous operator has the following (for us very important) pro­
perty): 

The q-continuous operator is also continuous. 

Lemma 2. / / M <-= Sn-X is q-compact in Sn-X and if T is q-continuous 
operator on M into Sn-V then TM c- Sn-1 is compact in Sn-V (See [2]). 

From this property follows immediately the first variant of the theorem of 
SCIIAUDER [2]. 

Theorem 1. Let T be an operator q-continuous on M c: Sn-V let M be convex, 
closed and q-compact, and let TM c: M. Then T has at least one fixed point 
on M. 

The assumption of the theorem of SCIIAUDER mentioned above that TM is 
compact, is substitued here by the assumption that T is (/-continuous on M 
and that M is (/-compact. For which follows the following lemmas arc very 
important. 

Lemma 3. Let the functions of M c: Sn-1 be uniformly bounded and equi-
continuous on J. Then the functions of the convexe hull M of M and also the 
functions of the closure M of M are uniformly bounded and equicontinuous 
on J [2]. 

Lemma 4. If M c: Sn-X is convex, then the closure M of M is also convexe. 
Now we are able to prove the 
Theorem 2. Let T be an operator q-continuo^ls on Sn-V Let M <=• Sn^ be 

a convex and closed set. Let TM cr M and let the functions of TM be uniformly 
bounded and equicontinuous on J. Then T has at least one fixed point on M [2]. 

The proof of this theorem is based on the fact that, following the lemmas 3 

and 4, the closure of the convex hull TM == N of TM is a set of the functions 
which are uniformly bounded and equicontinuous on J. Following the lemma 
1 N is g-compact. But this set is convexe and closed and N cr M. From here 

we have: TN <-= TM c: TM — N. The application of the theorem 1 finishes 
the proof. 
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For the applications the following theorems are more convenient [2]. 

Theorem 3, Let T be an operator on Sn^ such that the following implication 
takes place: 

{/*, / e Sn-19 fk -*-> / , {|\fk\|} bounded} =-> {|\Tfk - Tf\\ -> 0 for k -> oo}. 
Futher, let M <^ Sn-X be a convex and bounded set and TM <= M. Let the 
functions of TM be uniformly bounded and equicontinuous on J. Then T has 
at least one fixed point in M. 

Theorem 4. Let M c. Sn~x be a convex and bounded set, let T be an operator 
q-continuous on M such that TM c: M. Let the functions of TM be uniformly 
bounded and equicontinuous on J. Then T has at least one fixed point in M. 

The proof of those two theorems is not different from the proof of the 
theorem 2. 

We shall now proceed to the application of those theorems on the differential 
equations. 

First of all we need the following lemma. 

Lemma 5. ([1] and [2]). Let Q(x) be a function, which is, on the interval 
(a, oo), —oo g a, continuous and non-negative in such a way that it is not 
identically zero on none of the subintervals of the interval (a, oo). Then the 
differential equation 

(A) uW + (-I)n+1Q(X) u==0 

has a solution u(x) having the following properties: 

(Va) 

(—XfuW(x) > 0 or (—l^+Wfc) > 0, k = 0,1, . . . , n — 1, 
lim nW(x) = 0, k = 1, 2, . . . , n — 1, 

£C->oo 

lim u(x) exists and is finite. 

It holds yet that lim u(x) = 0 iff f ap-*Q(x) dx = oo. If f xn~*Q(x) dx < oo, 
£C-»00 

there is exactly one solution (excepted the linear dependence) having the properties 
(Vx). In this case lim u(x) =fi 0, and we will say that u(x) has the properties (V). 

£C-»oo 

Let us now consider the differential equation 

(B) yW + (-lp+Wfa y, y', . . . , y<n~V) y = 0. 
Has this equation a solution having the properties (V) when the function B 
has similar properties as those of Q(x)\ The following theorem gives an 
affirmative answer [2]. 

Theorem 5. Let be the following conditions fulfilled: 

146 



1. The function B(x, u), u = (u0, ux, . . . , wn~i) (u being a vector with the 
terms u0, uv . . . , un-x) is in the domain 

Q :a < x < oo, —oo < ut < oo, i = 0, 1, . . . , n — 1, 

continuous in (x, u) and non-negative such that for every point c = (c0, cv . . . , 
c«-i) ^ (0, 0, . . . , 0) the function B(x, c) equals identicaly to zero in none of 
the subintervals of the interval (a, oo). 

2. B(x, u) is monoton in every one of his variables u\, i = 0,1, . . . , n — 1, 
for ui ^ 0 as well as for u% < 0 (the monotony for ui ^ 0 can be different from 
that for ui < 0). 

3. For every point c = (c0, clf . . . , Cn-i) is 
oo 

/ xn"1B(x, c) da; < oo. 
oo n—1 

4. lim 4" \&-*B{x, c) dx = 0 for \c\ = / |c<| g k. 
i\\Om 

Then through every point (x0, y0), x 0e (a, oo), y0 # 0, passes at least one 
solution z(x) of the equation (B) having the properties (V) on the interval of his 
existence (which is not smaller then (x0,oo)J. 

We draw a sketch of the proof. Let be J = (x0, oo),x0 > a. We are looking 
for the solution z(x) of (B) in the space Sn-V Let be Gk = {f(x) e Sn-^ \ \f(x)\ \ <; 
g k} (the sphere closed). Then from the monotony of B(x, u) in u% follows 
that for every f(x) e Gjc 
B(x,f(x),f'(x), . . .JWiz)) = B(x, f(x)) S B(x, &0, &19 ..., dn-x) = B(x, 6) 
Avhere #< means one of the numbers 0, k, —k according to the monotony of B 
in U(. B(x, 8) is a majorante integrable. 

In view of 3. we have 

oo oo 

(1) fxn~xB(x, f(x)) dx g / xn~xB(x, 6) do; < oo. 

Then for the equation 

(2) yW + (~l)n+iB(x, f(x)) y = 0 

holds the lemme 5. There exists just one solution u(x) of this equation which 
passes through the point (x0, y0) having the properties (V) on J. With the 
help of this we can define an operator T on G^ in this way: Iif(x) e G^, then 
Tf(x) = u(x) is the unique solution of (2) having the properties (V) on J and 
wrhich passes through the point (x0, y0). This solution is also a solution of 
the integral equation 
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«(x) = y0- (-l)w+1 / {X°{n _ y B(t, f(t)) u(t) di + 

CO 

+ (_i)»+i j - ™ ^ - B(f\ f(0> «(*) <-*• 
X 

With the help of 3° we can prove that TGk c #.„_.! and with the help of 4° 
we can prove the existence of such a number k0 that TGjc0 c Gjc0. The sphere 
Gjco is evidently closed and convcxe. It is easy to prove that it is also ^-closed. 
From 3°, (1) and from the Lebesgue's theorem follows the (/-continuity of T 
on Gjc0. Then we prove that the functions of TGjc0 are uniformly bounded and 
equicontinuous on J. The application of the theorem 4 gives the existence 
of a solution of (B) having the properties (V) on J. Next it can be easily proved 
that this solution can be extended to an interval (b, oo), a ^ b < x0 and this 
extended solution has the properties (V) on (b, oo). 

CO 

Let us now return a little to the equation (A). If we suppose that f xn~1Q(x) 
dx < oo, then there exists just one solution u(x) of (A) having the properties 
(V) and such that lim u(x) m0 ^ 0, m0 beeing a real number choosen arbit­

er-** oo 
rary. On the basis of this we can prove the 

Theorem 6. Let the conditions 1°, 2° and 3° of the theorem 5 be fulfilled. Let 
m0 be an arbitrary real number different from zero. Then there exists at least 
one solution z(x) of (B) which has, on the interval of his existence, the propertiets 
(V) and for ivhich lim z(x) = m0. 

£E->co 

The proof is similar to that of the theorem 5. We define the operator T 
on the sphere Gjc : if f(x) e Gjc, then Tf(x) = u(x), where u(x) is the solution 
of the equation 

y(n) + (-I)n+1B(x,f(x))y = 0 

having the properties (V) and such that lim u(x) = m0. This solution is 
a;->co 

unique and it satisfies also the integral equation 
oo 

«(*).=- m0 + (-1)»+- J ^ l 0 " ) " ) 1 B(t, f{t)) u(t) 6t. 
X 

The existence of a number k0 > m0 such that TGjc0 <=• Gjc0 is assured by a con-
vinient choice of x0. The rest of the proof is nearly the same as in the proof 
of the theorem 5. 

Also the proof of the following theorem is analogous [2]. 
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Theorem 7. 1° Let P(x, u) be a function defined and continuous on Q and 
non-negative in such a way that for every point c = (c0, cl9 . . . , cn-i) ^ (0, 
0, . . . , 0) the function P(x, c) is identically zero on none of the subintervals 
of the interval (a,co). 

2° Let be P(x, u) ^ B(x, u) for every point (x, u) e Q and let the function 
B(x, u) fulfil all the conditions of the theorem 5 respectively 6. 

Then for the equation 

(P) yW + (-l)n+ip(X9 y9 y', . . ., y(n-D) y = 0 

hold all the statements of the theorem 5 respectively 6. 
Let us return now to the theorems 1—4 which have established in the casa 

of space Sn-!. But we can prove the validity of those theorems also in the 
case of other Banach spaces then Sn^ [2]: 

Let X <= An-1 be a Banach space with the norm \\ \\x such that the convergence 
occording to this norm implies also the q-convergence. Then the theorem 1 holds 
if we substitute Sn-t by X. If the q-compactness of the set M c- X follows from 
the properties that the functions of M are uniformly bounded and equicontinuous, 
the theorem 2 and 4 hold for X. If yet from the fact that the functions of the set 
M are uniformly bounded and equicontinuous follows that they are also bounded 
in the sense of the norm \\ \\x, the theorem 3 holds if we substitute Sn-t by X. 

We are giving now some examples in which the above exposed ideas find 
their application. 

Theorem 8. [7] Let B(x, u), F(x, u), u•= (u0, ux, . . . , Un^), n ;> 1, be the 
functions non-decreasing in every of his variables ui, i = 0,1, . . . , n — 1 and 
such that 

(3) \B(x, u)| ^ F(x, u) on Q. 

Let K be a positive number, x0 > a and 0 ^ k ^ n — 1 an integer. Let 
k 

(-) *<*> = * 2 ^ T T ^ ' 
oo 

(5) jxn-k-iF(x, <p(x), y'(x), . . . , <p<*)(x), K, K, . . . , K) dx < oo 

for every K < 0, 
oo 

(6) Km -^ I (x - x0 + l)»-*-iE(a;. <p(x), ..., <pW(x), K, ..., K) dx = 0 
K->oo J-- J 

Let be finaly c0, cx, ..., c# real arbitrary numbers. Then the differential equa­
tion 
(E) Vw + B(x,y,y', ...,y^-1)) = 0 
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has at least one solution defined on J = (x0,oo) and satisfaying the conditions 

(7) y^(x0) = a, * = o , i , . . . , f c - i 

lim y®)(x) = ck, 

lim yW(x) = 0, * == k + 1, . . . , n — 1. 
SC-»oo 

I am going to scatch the proof. By a simple calculus we can see that the 
solution of the integral equation 

(8) n.^^-f^ifc^^)** 
8 = 0 8 = 0 £T0 

n —1 oo 

8=k X 

is also the solution of the equation (E) and fulfils the conditions (7). 
We are looking for this solution in the Banach space Cn~ltk c An^1 of all 

functions which have the bounded derivatives of the orders k, k + 1, . . . , 
n — 1 on the interval J = (x0, oo). Let the norm in Cn-ltk be 

||A*)|| = max {sup |/W(.r)|} + £ \f«)(Xo). 
k£i£n-l J i = 0 

It can be easily shown that the convergence according this norm implies the 
^-convergence. 

Let be GK = {f(x) e Cn-ltk\ \\f(x)\\ £ K}. Then for every f(x) e GK holds 
\f»)(x)\ ^ q>m(z), i = 0,l, ...,k, 
\f«)(x)\ £K, i = k+l, . . . , n - l . 

If we respect (3), (5) and the monotony of F(x, u) we have 

(9) \B(x,f(x))\ ^F(x,<p(x),K), 

where F(x,<p(x), K) = F(x, <p(x), <p'(x), . . . , <pW(x), K, . . . , A")) and 

X X 

s = k, k + 1, . . . , n —- 1. 

This allows us to define the operator T on GK by the formula 
k 

(11) TA*) = *(*) - 2 C s ^ T T ^ -
8 = 0 
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s-=k a: 

We can see immediately that TGK C Cn-*,*. From the condition (6) follows 
the existence a certain number K0 such that TGK0

 C GK0> The g-continuity 
of T on GK0 follows from the conditions (3), (5), from the monotony of F(x, u) 
and from the theorem of Lebesgue. 

Note TGK0 = H. Let HW, i = 0,1, . . . , ft — 1 be the set of the derivatives 
of the order i of all the functions of H. I t can be proved that the functions 
of H$\ i = k, k + I, . . . , n — 1 are uniformly bounded and equicontinuous 

on J . Le us make the closure of the convexe hull H = M of H. We can prove 
that the functions of MM, i = k, k -\- 1, ..., n — 1 are uniformly bounded 
and equicontinuous on J. From this we can prove that M is g-compact. 
Then we now that M is convexe, closed, g-compact and M c: GR0- From this 

7\ 
last relation we obtain that TM <= TGK0 = II ^ H = M. The application of 
the theorem 1 finishes the proof. 

If we take for F(x, u) a linear expression, 
n - l 

F(x, u) = a(x) + 2 a>i-i(x) |*«|, 
i =0 

we obtain from the theorem 8 the 
n - l 

Theorem 9- Let be \B(x, u)\ g a(x) + 2 <*n-t(x) Nl = F(x, u) for every 
i-=0 

(x, u) e Q and let be a(x) ^ 0, an~i(x) ^ 0, 
oo oo 

J gn-fc-igfg) do; < oo, / a?n"*-1an-i(^) da; < oo, t = fc + 1, fc + 2, . . . , n — 1, 
oo • 

j atn-t-ian-t(x) dx < oo, t = 0,1, . . . , fc. 
Then for xQ sufficiently large the affirmations of the theorem 8 hold. 

The theorem 8 gives the results which are a generalization of the results 
of M. P. WALTMAN [4] for the equation yW + f(x, y) = 0. He proves, by 
a different way, the existence of a solution y(x) for which lim y(x)jxn-1 = 

JE->oo 
oo 

= ft ^ 0 under the conditions: \f(x, y)\ g a{x) f,x>0 and / x^n~l)a{x) dx < 
<oo . 
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By the same method as above we can prove the following theorems (in the 
space Cn-w-x): [3]. 

Theorem 10, Let B(x, u), F(x, u) be the contimtous functions in the domain Q. 
Let F(x, u) be non-decreasing in every of the variables u\, i = 0,1, . . . , n — 1. 
Let K > 0, x0 > a and 

n-l 

<p(x) = K £ ji (x — xoy, 
s=0 

oo 

(12) fxn~1F(x, <p(x)) dx < oo for every K > 0, 
CO 

(13) lim -^ I x*-*F(x, <p(x)) dx = 0, 
7£_>co A J 

(14) \B(x, U)\ ^ F(x, u) for every (x, u) e Q. 

Finaly, let c0, cl9 . . . , cn^1 be arbitrary real mimbers. 
Then the equation (E) has at least one solution ^l(x), which exists on J = 

= (x0, oo) and for which hold the formulae: 
« - i 

(15) «<»>(*) = ^ c* {X
{^J°iy* + °<1)' »' = *>l> • • - . » - - • 

s = i 

Note. If we substitute the condition (12) by 

f xn-i+t p(Xj cp^)) &x < oo, e > 0, 

then in the formulae (15) it is possible to substitute o(l) by o(x~e). And if we 
n - l 

take for F(x, ^l) = a(x) + 2 an-i (%) M> theorem 10 gives a generalization 
i=0 

of the results of M. ZLAMAL [5] found for the linear differential equations. 
Theorem 11. [6] Let fulfil all the conditions of the theorem 10 ^vith the exception 

of the conditions (12) and (13), which will be s^lbstitued by 
CO 

(12') / F(x, <p(x))dx < oo for every K > 0, 

(13') lim - I [ F(x,tp(x)) dx = 0. 
K-+oo A J 

Then by the initial conditions (x0; c0, cl9 . . . , e^-j), where a are real arbitrary 
numbers, is determined at least one solution ^c(x) of (E) which exists on J = 
= <x0, oo). 

If morover the condition (12) is satisfied, then for this solution u(x) hold 
the formulae: 
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(16) uV)(x) = V cs

 {-. ^ p * + 0(1), i = 0, 1, . . . , n - 1. 

Those are some exemples where / profit with success of the variants of the 

theorem of SCHAUDER mentioned above. 

I wish yet to remark t h a t one can utilise this method in many other cases, 

chiefly in the cases where the theorem of Arzela has been applied and that ' s 

why it has been limited on a finite interval. I n the first place that are the 

problems of the global existence, the linear problems and the boundary-value 

problems. 

The notions and the theorems of which I spoke, have been prepared in to 

their application to the problems of the differential equations of n-th order. 

There is no difficulty to adapt those for the systems of differential equations. 
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