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ON OSCILLATION OF SOLUTIONS
OF LINEAR ORDINARY
DIFFERENTIAL EQUATIONS

T. A. CHANTURIA Section A
1. N. Vekua Institute of Applied Mathematics
University str. 2, 380043 Tbilisti, USSR

Consider the linear differential equation
(1) w4 peru = 0
where n > 3 and the function p : R, = R 1is locally integrable. In

+
addition, we assume that p satisfies one of the following

inequalities

(2) p(t) 2 0 for t € R,
or
(3) p(t) < 0 for t € R, .

A nontrivial solution of the equation (1) is said to be oscifla-
Zory if it has infinitely many zeros and nonosciflatory - otherwise.

The equation (1) is said to be osciflatory if it has an oscilla-
tory solution and nonoscillatorny if all its nontrivial solutions are
nonoscillatory.

The equation (1) has property A if for even n each nontrivial
solution of this equation is oscillatory and for odd n either
oscillatory or satisfying the condition
) a6l 0 for £t + e (i = 0,...,n - 1),

The equation (1) has property B if for even n each nontrivial
solution of this equation is either oscillatory, or satisfying
condition (4) or the condition

(5) lu@ (e + o for th 4+ (i=0,...,n - 1)
and for odd n either oscillatory, or satisfying the condition (5).
Let 1 € {1,...,n = 1}. The equation (1) is said to be (l,n - 1)
conjugate (at a neighborhood of +x) if for any tg2 0 there exist
t2 > tl > to and a nontrivial solution of this equation such that
u(J.')(tl) =0 (i=0,...,1-1),
«Pe) =0 1 =0,...,n-1- 1),
Otherwise the equation (1) is said to be (1l,n - 1) disconjugate (at a
neighborhood of +«) .
With regard to the presence of properties A and B, oscillation of
equations and (n/2, n/2) conjugacy of equations of even order, see
[1-75].



In what follows we study the connection of (1,n - 1) conjugacy

with oscillation as well as with the presence of property A or B.

THEOREM 1., Llet the {inequality (2) (the inequality (3)) hotd.
Then the folLowing AtgtementA anre equivalent: .

a) the equation (1) has property A (property B);

b) for any £ € {1,...,n - 1} such that £ + n {8 odd (even], the
equation (1) 48 (L,n - L) conjugate;

c) the equation (1) 48 (n - 1,1) conjugate ((1/2(3 + (—1)"),
no-1/2(3 + (-1)") confugate).

Defdine the numbenrs L: and £*n by the following equalities.

n/2 -1 4§ n=0 (mod 4),
6) 2% = n/?2 4§ n=2 (mod 4),
n n - 1/2 4§ n =1 (mod 4),
n+ 1/2 4§ n =3 (mod 4).
n-1-2%4§n=0 (mod 2),

¢7) £ = % Vl_ =
n n- Ly Lf§ n =1 (mod 2).

THEOREM 2. Llet the inequality (2) (the inequality (3)) hotd.
Then the equation (1) is oscillatory if and only if it is (Lz,n - Lﬁ)
conjugate ((L*n,n - t*n) conjugate).

To prove this assertion the following statements are used:

LEMMA 1. Let the 4inequality (2) (the 4inequality (3)) hofd, p be
not trivial in any neighbornhood of +°, £ € {1,...,n - 1} and £ + n 44
odd (even]. Then the equation (1) 48 (L,n - &) disconjugate if and only
i§ thene exists a solution of this equation such that

B ouce) >0 for tz 2y (L= 0,...,8- 1),

(8,) : ;
L OO yue) > 0 fon t 2 £y (6= L,uaym - 1)

COROLLARY. Let the 4inequafity (2) (the inequality (3)) hotd,
L€ {1,...,n - 1} and £ + n 4is odd (even). Then the equation (1) has
the s0lution satisfying the condition (82) 4§ and only if the equation
(n n
+ (-1) . p(HDu =0
has the sofution satisfying (8, _ ,).

LEMMA 2. Let the 4inequality (2) (the inequality (3)) hokd,
L€ {2,...,[n/21}, £ + n 48 odd (even) and there exists a so0lution of
the equation (1) satisfying the condition (8,). Then the equation
u(n) - p(Du = 0
has a sofution satisfying the condition (82 _ l).




By means of theorems 1 and 2 and by the results of [4,5] we can
derive the sufficient conditions under which the equation (1) is
(1,n - 1) conjugate.

THEOREM 3, let £ € {1,...,n - 1} and eithen the 4inequality (2)
hofd and n + £ 48 odd, or the inequafity (3) hold and n + £ {3 even,
Then the equation (1) is (L,n - £) conjugate if one of the foLLowding
conditions is fulfilled:

n

1) lim sup ¢ ™% 2 ps)ids > (n - 1)1 ;

Z++o0 z
2) n + £ 44 odd and

lim inf £ [Y%""2p(s)ds > M ;
Ltoo t "

3) n and £ are even and

lim inf 2 /Y% 3 pslds > 1/2M
Letoo t "

4) n and £ are odd and

lim inf ¢ 7" 2 pMds > My,
ttoo n
whene Mﬁ and M*n are the Langest Local maximum of the polynomials
(9) PE(x) =-x(x - 1) ... (x - n + 1)
and
(10) P*n(x) = x(x - 1) ... (x - n+ 1),
respectively.

THEOREM 4. Let the 4inequality (2) hold. The equation (1) 44
(l:,n - Zﬁ) conjugate if one of the folLlowing conditions is fulfifled:
1) 1im sup £ . f¥%" 2p(s)ds > L¥1(n - L)1 ;
frotoo t " "
2) lim sup 1ln % f+“2n-1[p(b) - m*A-"] ds = 4o,
Logoo t n +

ST p) - mEe et dt <+
1

3) n & 3 (mOdu4) and

£ P
lim inf ¢ " "m0 ds > misek

A0 t
4) n =3 (mod 4) and
L2%*-1 n- %
lim inf ¢ " 1Y% Mp(sdds > mE/er - 1
oo P n’n

whenre ii is defined by the equality (6) and m: 46 Zthe Least Local maxdi-
mum of the polynomial (9).

THEOREM 5. Let the inequality (3) hofd. The equation (1) 48
(Z*n,n - l*n) conjugate if one of the folLLowing conditions is fulfilled:
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n

1) 1im sup £ I+m4 -2|p(é)ldé > Lo tn - £y )Y
t n n

Lo

2) 1im sup 1nt ™" Y ps) + my, 47" ds = 4
Lo t " -
P )+ omy e tnltdt < s
1 n-
3) n #F 1 (a0d 4) and

La n-(.,-; -1
lim in< = % *%% Toipadids > my /R,
1400 ba n n
4) n =1 (red 4) and
"1 n-t.,:
lim inf 2 % ™% Mips)ids > omy /0, -1

Lo t
whene I_*n is defdined by the equality (7) and M 45 the Least Local
maximum o4 the polynomial (10).

In the case when n = 2 (mod 4) and p is nonnegative or n =
= 0 (mod 4) and p is nonpositive Theorems 3 - 5 precise certain results
of I.Glazman ([1],Theorems 9,11 and 12). In order to verify this fact
it suffice to take into consideration that for any positive integer m

2 m k-1 -2 2
[(m=1)1] (=1) k-1 __[(2m-1)1] _ 2
2m - 1 kzl 2m-k Cn-1 "Tn-1)[(m-1) Y z 2m-1)t = (ml)
and, in addition, if n = 2 (mod 4),then £} = n/2, m¥ s[(n-1)11] %270
and if n =0 (mod 4), then £, = n/2, m,_ = [(n-1)111%27",
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