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ENCLOSING METHODS FOR PERTURBED
BOUNDARY VALUE PROBLEMS

IN NONLINEAR DIFFERENCE EQUATIONS

J. W, SCHMIDT
Technical University of Dresden
Monvmsensty. 1.3, Dresden, DDR

1. In the lecture nonlinear equations Fa(z) = 0 are considered de-

pending on an input parameter vector a which may be subjected to
errors, shortly a € A.

In order to study the influence of the input
a € A on the solutions z

a’ by means of monotone enclosing methods

intervals are constructed containing for each a € A at least one

solution L Such a type of methods can be developed if the opera-

tors Fa

{1].

possess some monotony properties, see SCHMIDT/SCHNEIDER

2. The FDM-discretization of the boundary value problem

u’’ = 2aosinh u - ¢(t>, u(0) = p, uly) = q- (2.1)

appearing in inner electronics is chosen as a model problem. Let the
net density ¢ Dbe agiven bv

o(t) = 9(t,0. ,..esa,_) =

1 7 (2.2)
2
10 —u2t2 8 —uut2 5 8 -a, (t-v)
= o 10 © + a_10 © + a_10°+ a_10 ©
1 3 5 6
In general the parameter vector a = (uo,...,a7)T is affected with
errors,
~ T
a=-ate, e-= (co,...,e7) . (2.3

This vector interval represents the set A.

Applying the common finite difference method to (2.2) (h

step size, t; = i h nodes, ¢

following system of equations

= y/(N + 1)
i approximation to u(t;)) one gets the

- + -
Fa(z) = Fa(z) + Fa(z) (2.4)
with
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(F¥(z)), = -¢. + 2¢.- ¢+ a h%
a 1 +1 )

-z,

- 2 2 .
(F1(2)); = -a;h’e o h et oy, e,) (305 1,000, N)

= g. Here the i-th component of a vector z is

and ¢, = Pr Oy
Obviously, the operators Fa are

written as (z).1 = Ty and so on.

offdiagonally antitone, the derivatives DF; are isotone and the deri-
vatives DF; are antitone if ay > 0. These properties are essential

in what follows.

3. Let R,S be finite dimensional linear spaces partially ordered by

closed cones. Thus these cones are normal and regular, too. For a

continuous operator

F: D= [yl,xl] CR=>S (3.1)

a mapping AF : D X D - L(R,S) is called an isotone-antitone divided

difference operator if

F(x)-F(y) £ AF(x,y)(x-y) for Y, Sy <x <X (3,2)

AF(x,y) < AF(u,v) for y, £ v<x <us X (3.3

(1) For F = F¥ + F” the mapping

AF(x,y) = DFY(x) + DF (y)

is a divided difference operator if DF+ is isotone and DF  is antitone,

see [10].

(ii) If, in addition, F is offdiagonally antitone
+ -
AF(x,y) = diag DF (x) + diag DF (y)

is a divided difference operator, see [10].

(iii) In interval mathematics the maximal derivative

AF(x,y) = ( max akFi(z))
y<z<x

is widely used being also a divided difference operator, see [7].



4, It is assumed that for any operator

F, : D= [xl,yll CR=>S, a €A (4,1)

an isotone-antitone divided difference operator AF exists. Because,
in general, Fa and AFa are not explicitly available, bounds of theirs
are used. Suppose there exist mappings U,V : D - S such that

u(z) £ Fa(z) < V(z) for z € D, a € A . (h,o)

The bounds U and V are assumed to be sharp in the following sense,

Fa(z) < 0 for all a € A implies V(z)

I

o, (4, 3)

Fa(z) > 0 for all a € A implies U(z) 2 0 , (4.4)

valid for every z € D. Further, for AFa let exist an upper bound
B : D XD - L(R,S) characterized by

IA
IA

AFa(x,v) < B(x,v) for v, <V x x a € a4, (h.5)

1’

IA
B

B(x,v) < B(u,v) for Y, Sv<y<x<u (4,6)

Now, the iterative process can be formulated.

Method [ 1] : Determine x such that

n+1/Yn+1

U(x,) + Bix

"
o

) (xppqm %) (4.7

n’'Yn n '

V(Yn) + B(xn’yn><yn+l_ yn) =0,n= 2.

If AFa is taken according to (i) or (ii) one gets a Newton-type

method or a Jacobi-Newton-type method, respectivelv.

5. Monotone enclosina theorem: Let xl.y € R, yl < x_. be such that

1 1

< <
V(yl) <0 < U(xl) . (5.1)
Suppose that the linear operators B(x,y) are invertible and that

B(x,y)_l > 0 for y, £y < x<x. (5.2)

Then the sequence (xn) and (y ) are well-defined by (4.7), any of
the operators F_, a € A, possesses a zero z, € [yl,xl], and for such

zeros the monotone enclosing

no=1,2,.. (5.3



is valid.
A proof shall be skatched. The operator T,

-1
T(z) = z - B(xl,yl) Fa(z), z € R

is isotone since for y, £y s x < x, one gets

T(x) - T(y) = x = y - B(xl,yl)'l(Fa(x) - F ()},
Fa(x) - Fa(y) < B(x,y)(x - y) < B(xl,yl)(x -vy)

and T(yl) 2y, hold.

implying T(y) < T(x). Further, T(xl) < x;
z, = T(z,) for

Thus, a fixed-point theorem of Kantorovich assures

IS =
some vector z, [yl,xll, and hence Fa(za) 0 follows.

Next, beinning with y < z_ < x , F_(z_) = 0, V(y_) €0 < U(x_) one
n a n a “a n n
i i < <
gets immediately X 41 S xn, further xn+l < za because of
-1
Xoi1™ Za = x -z - B(xn,yn) {U(xn) - Fa(za)},

U(xn) - Fa(za) < Fa(xn) - Fa(za) < B(xn,yn)(xn- za),

and U(xn+l) > 0 in consequence of

Fa(xn) > U(xn) = B(xn,yn)(xn-xn+l) > Fa(xn)- Fa(xn+l)' a €A,

Analogously Yo S ¥4 S z, and V(yn+l) < 0 is derived.

6. The assumption (5.2) can be weakened as follows: There esists a
mapping G € L(S,R) with ker G = {0} and
G20, G B(xl,yl) <1,

see [1].

7. In the model problem (2.4),(2.5) let the input parameters be

= 1 + = +
a, 2321.385 €, U4 11/3 €5s

= + = +
oy 1121.918 4> %5 2 €55 g 62 %7 869,9157 €,

H+
™

= 0,25717, p = arsinh(¢(0)/2) and g = arsinh(e(y)/2). In order

and y =
to demonstrate the different influence of these parameters on the

respective components of the zeros some typical examples are given

computed by the Newton-type method (4.7),(i). The dimension in all
= lim x_,
n

cases is N = 30. Further, the notation x* = (;l,...,ﬁao)T

v = (”1""’”30)T = lim y, is used.
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Example 1: €67 0.01, €= Q(i#0) Example 2: €= 0.01, oy= 0(i%1)
i "3 £y "y Ly
5] 19.943.. 19.963.. 19.949.. 19.957
91-12.509.. -12.489.. -12.500.. -12.498..
190 0.453,. 0.473.. 0.4625.. 0.4646..
11| 10.618.. 10.638 10.6282, . 10.6286..
15| 12.197.. 12,217.. 12.20699609 12.20699609
20| 13.420.. 13.440.. 13.43032446 13.43032446
25| 18.155.. 18.175.. 18.16511803 18.16511803

Example 3: €= 0.01, ei:O(i*S) Example 4: €= 0.01, €yF 0(i#46)

n. [ n. 4

i i i i
5| 19.953080.. 19.953085.. 19.95308310 19.95308310
9]-12.505.. -12.,493.. -12.49914874 -12.49914874

10 0.413.. 0.513.. 0.46357969 0.46357969

11} 10.602.. 10.654.. 10.62844138 10.62844139

15| 12.201.. 12.211.. 12.206994.. 12.206997..

20( 13.428.. 13.431.. 13.429.. 13.431..

25) 18.165105.. 18.165130.. 18.163.. 18.166..
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