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ON NONPARASITE SOLUTIONS

P. KRBEC
Aeronautical Research and Test Institule
199 05 Prague 9, Czechoslovakia

1. Introduction
We shall investigate the differential relation

(1) % € F(t,x), x(0) = X,

where F : U~ K, U =¢(0,1 X B;, K is the set comprising nonempty,
, is the unit ball in R", Jarnfk
and Kurzweil [2] proved that if F(t,x) is convex then we can suppose

compact subsets of some ball in Rn, B

F to be Scorza-Dragonian. These authors and many others (see e.g. [1],
[2], [3], [10], [12]) have studied the convex case very thoroughly.
The nonconvex r.h.s. has been attacked too, certain very strong
results being obtained e.g. by Olech [7], Tolstonogov [10], [11], Vr-
ko& [12]. It is easy to see that to obtain some reasonable existence
theorem in nonconvex case it is necessary to suppose F to be continu-
ous. It is a well known fact that the solutions of X € F are then
dense in the set of all solutions of X € conv F, see e.g. Tolstonogov
[9].

It is tempting then to use the Filipov respectively Krasovskij
operation to define generalized solutions of x € F(t,x), F being
possibly nonconvex. To be more specific, we can define the solution

of X € F(t,x) through the relation x € G(t,x) where

G(t,x) = N N conv F(t,Bg(x) - N) or
§>0 u(N)=0

G(t,x) = N <conv F(t,B6(x)) .
5>0

The main problem is that introducing even the solution of x = f(x), £
discontinuous real valued function, through Filippov or even Krasovskij
operation we can obtain certain meaningless solutions.

2. Example 1. (Sentis [8])

Let £ : R- R, f(x) = -1 for x 2 0, £(x) = +1 for x < 0.
Then x(t) = 0 is a (unique) Filippov solution of the Cauchy problem

x = £(x), x(0) = 0, t € (0,1, This type of solution is called sliding
motion and there are good reasons to consider it to be the solution.
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On the other hand let f(x) = 1 for x 2 0, f(x) = -1 for x < 0.
Then the Cauchy problem x = £(x), x(0) = 0 has the Filippov solution
x+(t) = t, x_(t) = -t and xa(t) =0 for t €(0,lal), xa(t) =
= sgn a.(t - lal) for t 2 lal. All the xa(.) solutions are physically

meaningless, they are called parasite solution. For the exact defini-

tion of sliding and parasite solution see [4] or Sentis [8].

3. Generalized solutions

Our aim is to define the solution of x € F(t,x) in such a manner
that all the sliding solutions are retained and all parasite are
expelled. The first definition of this type was given by Sentis [8] in
1976 and it was as follows:

Definition 1. Function y(.) : (0,1) = R™ is a g-solution of the
differential relation % € F(t,x), x(0) = x, on (0,1) iff there exists a
sequence {y }n 1 of piecewise llnear functions and a sequence {(h )

of divisions such that (denote Yo (h ) by xk and v(hn) by vn)

i) lim |h_| = 0 ,
n

n-.oo
ii) x0 = X
n 0
iii) for every positive integer n and k = 0,1,...,v there are
k k _k k n k+1_ _k k+1_ .k
a, € F(hn,xn) and €n € R such that x U= ox o+ a) (h hn) +
+ X
. +
and yn(.) is linear on every <h§,hi 1), k = 0,1,...,un
v
nok
iv) 1lim z lell =0
n-+~ k=1 n

v) lim Y, =Y uniformly on (0,1) .
n

Sentis irtroduced this definition to cover the case (cl stands for
closure)

F(t,x) = N N cl £(B_(t,x) - N) and his definition works
6%0 epn+l 6
NCR
w(N)=0

well for such right-hand sides., He proved that any classic solution of
X € F(t,x) (i.e. any absolutely continuous function x(.) such that

x(t) € F(t,x(t)) a.e.) is a g-solution, any g-solution of X € F(t,x) is
a classic solution of x € conv F(t,x) and there are no parasite solu-
tions.

4, Example 2.
For R'= R set Fi(t,x) = {-1} for x < 0 and every t, Fy(t,x) =
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= {-1,1} for x = Q and every t and F,(t,x) = {1}for x > 0 and every t,
1
F_(t,x) = F,(t,x) for t dyadically irrational and every x. For t =
2 1 » et
= (k/2™), k odd, set F,(t,x) = F (t,x) for x § (-1/2", 1/2™ and
F (t,x) = {-1,1} for x € (-1/2™,1/2™ . Then both F. and F., are u.s.c.
2 1 2

mappings and u{t € (O,1>I§(Fl(t,x) * F,(t,x))} = 0.

The function y(.), identically equal to zero on (0,1) is not a
g-solution of X € Fl(t,x), x(0) = 0 but it is a g-solution of the
relation x € F,(t,x), x(0) = 0 on (0,1,

This example shows that even for F u.s.c. the solution does
depend on values which F obtaines on a set whose projection on t-axis
is of measure zero. In the sequel we shall modify the definition of

the g-solution to avoid this discrepancy.

5. Regular Generalized Solutions
Let F be Scorza-Dragonian. Denote GyF = {(t,x,y)ly € F(t,x),
t M i.e. GyF is the graph of the partial mapping F'((O 1) -M) XB *
’

We set G*F = n ci1 GyF and define a multivalued mapping F* through
u(M)=0
Mc¢ 0, D

its graph i.e. we set graph F*= G*F. It is possible to prove that there

exists a set M, c(o,1), u(MO) = 0 and G*F = cl GMOF, so our definit-
ion is meaningfull. The set G*F is closed hence F* is u.s.c. If the
mapping F is u.s.c. too then F* C F because

graph F* = cl GuyF C cl GF = GF and {t € (0,1 | IF*(t,x)# F(t,x))}C My

i.e. its measure is zero. We define the solutioﬁ of x € F(t,x) through
the Sentis g-solution of x € F*(t,x); resulting type of solution being
called rg-solution. It retains all the nice properties of Sentis g-so-
lution and is independent on behaviour of F on a set of measure zero
(in t). If the mapping F is supposed to be only Scorza-Dragonian we
have only graph F* C cl GF and F*(t,x) D F(t,x) for t & MQ, nonetheless
the rg-solution can be defined too. There is following characterisation

of rg-solution:

Theorem 1. Let F be a Scorza-Dragonian mapping. Then a function
y(.) is an rg-solution of x € F(t,x) iff for every M C (0,1, u(M)= 0

® and th 17 such that all conditions of
n=1 n n=1

Definition 1 are fulfilled and Ulhn M = ¢.

n=

To prove the theorem we will use the following trivial lemma.

there are sequences {yn}

Lemma. Let us suppose a € F¥(t,X), M C[0,1], u(M) = 0. Then

there are sequences {(t ,x J)}._. and {a_}._. such that a_€ F*(t_,x )
q n’“n’‘n=1 n’n=1 n n’“n’’
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£ M, ii: (tn,xn,an) = (t,%,a).
Proof. From a € F*(t,x) we obtain as a consequence of the
identity GF* = G*F and of Lemma 1 that (t,x,a) € GF* = cl GMOUMF'
u(MO U M) = 0. Hence there exists a sequence {tn,X ,a} -~ (t,%,a) such
that t #M_UMand a € F(t_,% ). Since F*(t1,£) = F(1,£) for v & My
n 0 n n n
the proof is complete.

Proof of the theorem: Since {t € [0,1]13 F*(t,%) = F(t,x)} C My,
xe RN

only if" part of the theorem follows immediately. To

prove the "if" part let y(.) be an rg-solution and M C [0,1], u(M) = O,

Then there is a sequence {yn}

u(MO) = 0, the "

-~ y and the sequence {hn} such that the

conditions (i),...,(v) from Definition 1 are fulfilled with F* instead

of F. Condition (iii) written explicitly has the following form:
ya(eth =y F) v akakrt _pky Kk e Xy k.
As a consequence of Lemma we obtain that y hi,ak

n and sﬁ can be
- —k -k
replaced by yn,Et,an,en such that

+1

_ .0 1 ='n"" _
(2) En-{0-En<Hn<...<hn 1} "M = ¢

n
for every n = l,2,3,...,hk < hk+l, (K - 5 < i/(n . v.), = 1K1 -~ 0
n n n n n"' oy n
as n - « and
(3) y (B**tL) =y (Ek) + ak(ﬁk+1 EK) + gk, 3K e ¢t (BK,y (B)
n n n n n n n n n

for n = 1,2,... and k = 0,1, 2,...,vn.

We can proceed for example ailfollows. For every n = 1 2,00, WE
0 - 10 - 0 = n = = = 0 Let
set H hn 0, y (H Xy Hn 1, y (1) Y, (1, 3 a an'

us denote l/(nu ) by p. As a consequence of Lemma we can choose h '

n
Ek and ¢ such that (2) is fulfilled and Ihn - hil < p, ¢ €EB (y (h ))
=k -..kk —x k _ -
a, €y¥* (h n'Yn ), a, € Bp(an) holds for k = 1,2,...,vn. We set yn(hn)
= ¢§ and choose such ?ﬁ that (3) is fulfilled. Then

X = § (EEYY) - (BK) - FEGEETT - RO

n
and
-k —k+1 k+1 k - =k -k k
IR < 17 EEY -y alTHE v Iy ) 2§ EDE + 0E) - al
—k+1 £k k —k+1 k+1 =%k _ .k
CIEEY - BEE + BafTORSTT - ni T 4 RS - np) 4

+ Hyn(hﬁ+l) - yn(hﬁ) - ag (hk+l - hﬁ)" < 3p + 2p + “ei“ .
k“ =

Hence lim zlE€fl = 0, similarly we obtain lim ?n = y uniformly on [0,1]

n--o°
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and the proof is complete.
It means that using division to construct a solution we can avoid any
set of measure zero.

6. Gauge approach

To define rg-solution we need F to be Scorza-Dragonian (due to the
definition of F*) but by means of avoiding the sets of measure zero we

can define the rg-solution for quite a general system. In the sequel,
using gauge approach, we introduce another procedure to define solut-
ions. Let us remind that a gauge is an arbitrary real valued positive
function and a division A = {tY} is subordinated to a gauge & (or A is
6-fine, A < &) iff ti1”
gauge set iff for every positive constant c there exists a & € Q such

t,< é(ti). We shall say that a set 2 is a

that sup 6(t) < ¢ and for every 61,...,6n€ Q there exists a 6 € Q such
that 6 < min(6l,...,6n).

There is a well known theorem about 6-fine divisions saying that
for every 6 there is a 6-fine division which is finite, see Kurzweil
[6]. In our case this theorem doesn’t hold because we operate with so
called left divisions. But a similar theorem holds with a countable di-
visions. Let us note that using general division instead of left one we
don’t succeed in rejecting parasite solutions.

Let @ be a gauge set. We shall say that y is an Q-solution of
%X € F(t,x), x(0) = X iff all ite@s of Definition 1 are fullfiled with
6-fine division, 6 € Q i.e.

¥ Y 3 3 3 3 (IEAI <e, ly - x
e>0 6eQ A< Ep Ep Xp

A|<e:).

The following theorem can be proved.

Theorem 2. Let F be bounded and let Q be a gauge set. Then there

exists an Q-solution.

Proof: Let p > 0 be such that lyl < p for all y € F(t, %,
(t,%x) € [0,1] X R™ and let K be the set of all x(.) € c({0,1)) such
that

a) Ix(t)] < p for every t € [0,1]
and
b) Ix(ty) - x(t2)| < polty - t,1 for every t,,t, € [0,1].

The K with the norm max is the compact metric space. Let § € Q. We
shall construct a set S6 C K. Let Sg be the set of all functions

fulfilling all the conditions of Definition 1 and such that (see



condition iv) I Heiﬂ < sup 6(t). It can be proved, by the method of
transfinite seéuences (see [13]), that Sg is non-empty. Every

function x(.) € Sg can be modified, by subtracting jumps € in points
) of division A, to obtain a function y(.) € K. This procedure results

in a set Sé C K. The set K is compact, hence N §6 + ¢, It is easy to
5eQ

see that every funetion x(.), X € N §5 is an Q-solution,which
5eq
completes the proof.
Let us denote Q4= {(6(.)162 a(s) > 0}, Q= {(6(.)16(t) = a(s) a.e.,

a(6) > 0}. Then it is possible to prove that Q_ -solutions are exactly

the Sentis g-solutions and Q,-solutions are prgcisely the rg-solutions.
Using the results mentioned above we can say that for F u.s.c. the
gauge set Qr is the good one to define a solution. But this is not true
for F Scorza-Dragonian because Qr—solutions are the solutions of % € F¥,
F* being u.s.c., F¥D F a.e. Hence we cannot expect Qr—solutions to be
solutions of x € conv F. So a natural problem arises:

What is the smallest but sufficient gauge set for Scorza-Dragonian
right-hand side?
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