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ON THE MOUNTAIN PASS LEMMA

KUNG-CHING CHANG

Department of Mathematics, Peking University
Beijing, China

In this paper, I propose to describe a generalized Mountain Pass
Lemma (MPL, in short), which extends the original MPL due to
Ambrosetti and Rabinowitz [1] in two aspects:

(a) from a Banach space to a closed convex subset,

(b) from the strong separation condition of values of functions

to a weaker one.
Three applications on multiple solutions of variational inequality,
semilinear elliptic BVP, and minimal surface are presented.

1. Let X¥ be a Banach space. Let C be a closed convex subset of X.
Let Q and S be two closed subsets of C.

We say that the boundary 3Q and S link w.r.t, C, if
1) 3Q N's = ¢,

(2) for each ¢ : Q = C continuous, satisfying
¢|aQ = idlaQ '

we have
#(Q) Ns ¢ .

Suppose that £ : C - R1 is a restriction of a Cl function defined
on a neighborhood of C. According to the variational inequality theory,
we say x, € C a critical point of f w.r.t. C, if

(f’(xo), X - xo) >0 v X €C

’

where {(, ) is the duality between ¥* and X.
For x* € ¥*, and X, € X, let us define

Ix*l, = sup{x*, x - x| x € c with Ix - x;I <13 .
1

We extend the Palais Smale (P.S. in short) Condition w.r.t. C as
following:
For any sequence (xn} C C, such that f(xn) is bounded, and

l—f’(xn)"x - 0 has a convergent subsequence.
n

THEOREM 1, Suppose that f satisfies the P.S. Condition w.r.t. C,
and that 3a € R' such that
Sup{f(x)| x € 3Q} < o ,

Sup{f(x)| x € Q} < += ,
and



f(x) > a, v x €85,
Then one of the three possibilities eccurs:
(1) a is an accumulate point of critical values.

(2) o is a critical value with uncountable Ku.
(3

c = inf Sup f(x) > « 1is a critical value,
AE€F x €1

where F = {A = ¢(Q)I| ¢ € c(Q,C), with ¢IaQ= idIaQ}

The proof depends on [6] and the following deformation lemma.
Let K be the critical set of f. v a € Rl, denote K_= £ 1) Nk
and fa = {x €Cl| £(x) < a}.

DEFORMATION LEMMA. Suppose that c is the unique critical value
of f in the interval [c,b) and that Kc is countable, then fc is a
strong deformation retract of fb\Kb.

Proof. It is a combination of the proofs given in K.C. Chang [5],
Chang, Eells [7] and Z.C. Wang [19]. A pseudo gradient vector field and
an associate flow were constructed in [7] for f € Cz_0 and finite K_,
it was proved in [5]. An improvement which enables to cover our
conditions, was given in [19].

Proof of Theorem 1. If non of these cases occurred, then there
would exist ¢ > 0 and ¢0 € c(Q,C) such that:
a = c, f"l(c, c+e] NK = ¢, Kc is countable and
¢0(Q) c fc+e *
According to the deformation lemma, there is a continuous ¢:

foye = fo. Since ¢ o ¢, € c(Q,C) with ¢ o ¢0|6Q= idlaQ, we have
(¢ o $,0(Q) NS # ¢. It implies

Sup{f(x)| x € ¢ o ¢0(Q)} >a=c .
This is a contradiction.

As corollaries, we have

COROLLARY 1. Suppose that X0 € C is a local minimum, and that
J X, € C such that f(xy) 2 f(xi), then f has a critical point other
than Xg .

In case C =X, this was obtained in K.C.Chang [2,4] in 1982,
Obviouslyﬂ it implies some results in D.G. de Figueiredo [8], D.G. de
Fiqueiredo S.Solmini [9], and Pucci-Serrin [12].

COROLLARY 2. Suppose that f has two local minima, then there
exists a third critical point.

2. We present three applications of Theorem 1 (or its corollaries).
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(1) variational Inequality

Let 2 be an open subset in R3, and let g be a nonnegative

measurable function defined on Q.
THEOREM 2. The functional
f(u) = Qf[—;—(Vu)z - 2u® + qul )
has at least two critical points w.r.t. the positive cone P in Hé(ﬂ).

THEOREM 3. Let ¢ € H{ 2), and let C = {u € Hé(ﬂ)l 0 < ulx) <¢(x)
a.e.}. Assume that
inf{f(u)l u €cCc} <0 . (2)
Then f(u) has at least three critical points w.r.t. C.

Outline of the proof. It is easy to see that u, = 0 is a local

minimum, and that the global minimum u, of f is attainable. The condi-
tion (2) implies u; = u,. Corollary 2 implies the conclusion of
Theorem 2.Similarly, Corollary 1 implies the conclusion of Theorem 2,

REMARK 1. The condition (2) is satisfied, if ¢(X) is large enough.

REMARK 2. For similar considerations, see C.Q. Zhung [20] and
A, Szulkin [18].

(2) A combination of the variational method and the sub - and

super-solutions.
Let @ be an open bounded domain with smooth boundary 39 in R, and

let g € c'(a X Rl,Rl), for some o < y < 1, be a function satisfying

lg(x,t)1 < c(1 + 1t1®)

for some constants C > 0 and o < %;% if n 2 3.
t
THEOREM 4., Let G(x,t) = [ g(x,£)d¢. Assume that.the functional
0
1 2
f(u) = f[;(Vu) - G(x,u(x))]ax
Q

satisfies the P.S. condition in the space Hé(n), and that f is unbounded
below. Moreover if there exists a pair of strict sub- and super-solutions
of the equation
-Au = g(x,u) in Q ,
{ulaQ =0 .
Then the equation has at least two distinct solutions.
For a proof, cf. K.C.Chang [2]. A considerable simplification can
be found in K.C.Chang [5].
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Many applications derived from this theorem, which includes the
superlinear Ambrosetti Prodi type problem, a nonlinear eigenvalue
problem, Amann three solution theorem, and a resonance problem. See
K.C.Chang [ 3]. The superlinear Ambrosetti Prodi type problem was

rediscussed in de Figueiredo [8] and de Figueiredo Solimini [9].

(3 Minimal surfaces

Let M be a compact oriented surface of type (p,k), and let (N,h)
be a compact Riemannian manifold with nonpositive sectional curvature.
If v is a conformal structure on M compactible with its orientation,
then we write (M,u) for the associated Riemann surface.

For a map ¢ : (M,u) - (N,h), the energy is

E(¢) = 7 flasl’axay .
M
Let T = (Fi}f be a set of disjoint oriented Jordan curves in N
satisfying an irreducibility condition, which prevents the degeneracy
of topological type.

THEOREM 5, 1If ¢i : (M,ui) - (N,h), 1 = 0,1 are homotopic
admissible conformal isolated E-minima, then there is a conformal
structure 1 on M and an admissible conformal harmonic map
¢ : (M,u) - (N,h) homotopic to both, which is not an E-minimum.

A special case, in which M is a borded planar domain and N is
Euclidean space Rn, is due to Morse-Tompkins and Shiffman [13,14,15].
If M is a disc or an annulus and N = Rn, that special case has been
reproved by struwe [16,17].

In proving this theorem, corollary 2 is applied. The closed convex
set is the following

c =m* X Hp.x),

1/2

where M={u € c® NH ([0,2n],Rl)Iu is weakly monotone, and

2k 2k
w5 = 5

and J¥(p,k) denotes the Teichmiiller space of compact oriented surface M

, for x = 0,1,2,3},

of type (p,k). The Munford compactness theorem is aonlied to verify the
P.S. Condition.
For details see Chang Eells [6,7].
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