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ON THE MOUNTAIN PASS LEMMA 
KUNG-CHING CHANG 
Department of Mathematics, Peking University 
Beijing, China 

In this paper, I propose to describe a generalized Mountain Pass 

Lemma (MPL, in s h o r t ) , which extends the original MPL due to 

Ambrosetti and Rabinowitz [ll in two aspects: 

(a) from a Banach space to a closed convex subset, 

(b) from the strong separation condition of values of functions 

to a weaker one. 

Three applications on multiple solutions of variational inequality, 

semilinear elliptic BVP, and minimal surface are presented. 

1. Let £ be a Banach space. Let C be a closed convex subset of £ . 

Let Q and S be two closed subsets of C. 

We say that the boundary 9Q and S link w.r.t. C, if 

( 1 ) 3Q n s = 0, 

(2) for each 0 : Q — C continuous, satisfying 

* ' 9 Q
= idl3Q ' 

we have 

0(Q) n s * 0 . 

Suppose that f : C - R is a restriction of a C function defined 

on a neighborhood of C. According to the variational inequality theory, 

we say x € c a critical point of f w.r.t. C, if 

< f' ( x Q ) , x - xQ> > 0 v x e c , 

where < , > is the duality between 3E* and 3E. 

For x* £ 3E*, and x £ 3E, let us define 

1x*lx = Sup{<x*, x - xx> 1 x G c with Hx - x-J < 1} . 

We extend the Palais Smale (P.S. in s h o r t ) Condition w.r.t. C as 

following: 

For any sequence {x } C c, such that f(x ) is bounded, and 

0 - f ' ( x n ) D x -* 0 has a convergent subsequence, 
n 

THEOREM 1. Suppose that f satisfies the P.S. Condition w.r.t. C, 

and that 3 a G R1 such that 

Sup{f (x)l x e dQ) <. a , 

Sup{f(x)l x G Q) < +oo , 

and 
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f(x) > a, v x G S. 

Then one of the three possibilities occurs: 

(1) a is an accumulate point of critical values. 

(2) a is a critical value with uncountable K , 
a 

( 3) c = inf Sup f(x) > a is a critical value, 

A G F x G A 

where F = (A = 0( Q) I 0 G C(Q,C), with 0 I = id I 1 . 

°U aQ 

The proof depends on [6] and the following deformation lemma. 

Let K be the critical set of f. v a G R1, denote K = f_1(a) n K 
and f = {x G CI f(x) < a}. 

a 

DEFORMATION LEMMA. Suppose that c is the unique critical value 

of f in the interval [c,b) and that K is countable, then f is a 

strong deformation retract of f, \ K,. 

Proof. It is a combination of the proofs given in K.C. Chang [5l. 

Chang, Eells [7l and Z.C. Wang [19]. A pseudo gradient vector field and 
2-0 

an associate flow were constructed in [ 7] for f G c and finite K , 

it was proved in [ 5] . An improvement which enables to cover our 

conditions, was given in [ 19] , 

Proof of Theorem 1, If non of these cases occurred, then there 

would exist e > 0 and 0 G C(Q,C) such that: 

a = c, f" (c, c+e] n K = <b, K is countable and 

V Q ) c f
c+£ • 

According to the deformation lemma, there is a continuous 0: 
fc+e "* fc* s i n c e 0 ° 0 O G C(Q,C) with 0 o 0Q|QQ= idl9Q, we have 

(0 o 0Q )(Q) n ,s. * 0. It implies 

Sup{f(x)| x G 0 0 0Q(Q)} > a = c . 

This is a contradiction. 
As corollaries, we have 

COROLLARY 1. Suppose that x„ G c is a local minimum, and that 

3 x G c such that f(xQ) > f(x ), then f has a critical point other 

than xn. 

In case C = 3c , this was obtained in K.C.Chang [2,4] in 1982. 

Obviously, it implies some results in D.G. de Figueiredo [ 8] , D.G. de 

Fiqueiredo S.Solmini [9], and Pucci-Serrin [ 12] . 

COROLLARY 2. Suppose that f has two local minima, then there 

exists a third critical point. 

2. We present three applications of Theorem 1 (or its corollaries). 
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(1^ Varlationa1 Xnequa1ity 

Let ft be an open subset in R , and let g be a nonnegative 

measurable function defined on ft. 

THEOREM 2. The functional 

f(u) = /[i(Vu)2 - ~u3 + gu] (1) 
ft l J 

has at least two critical points w.r.t. the positive cone P in HQ(ft). 

THEOREM 3. Let <], G E\ ft), and let C = (u G H0 (ft ) I 0 < u(x) <<j, (x) 

a.e.}. Assume that 

inf{f(u)I u G c} < 0 . (2) 

Then f(u) has at least three critical points w.r.t. C. 

Outline of the proof. It is easy to see that u = 0 is a local 

minimum, and that the global minimum u~ of f is attainable. The condi

tion (2) implies u-ĵ  = u^. Corollary 2 implies the conclusion of 

Theorem 2.Similarly, Corollary 1 implies the conclusion of Theorem 2. 

REMARK 1. The condition (2) is satisfied, if (J>(x) is large enough. 

REMARK 2. For similar considerations, see C.Q. Zhung [201 and 

A. Szulkin [ 18] . 

(2) A combination of the variational method and the sub - and 

super-solutions. 

Let ft be an open bounded domain with smooth boundary 3ft in Rn, and 
Y 1 1 

let g G cr(ft X R ,R ), for some o < y < 1, be a function satisfying 

lg(x,t)| < c(l + It|a) 

for some constants C > 0 and a < BlA if n > 3. 
n-
t 

THEOREM 4. Let G(x,t) = / g(x,£)<U. Assume that.the functional 
0 

f(u) = J[~(Vu)2 - G ( x , u ( x ) ) l d x 

ft 
satisfies the P.S. condition in the space H (ft), and that f is unbounded 

below. Moreover if there exists a pair of strict sub- and super-solutions 

of the equation 

-Au = g(x,u) in ft , 

Then the equation has at least two distinct solutions. 

For a proof, cf. K.C.Chang [2l . A considerable simplification can 

be found in K.C.Chang [ 51 . 
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Many applications derived from this t h e o r e m , which includes the 

superlinear Ambrosetti Prodi type problem, a nonlinear eigenvalue 

problem, Amann three solution theorem, and a resonance problem. See 

K.C.Chang [ 3] . The superlinear Ambrosetti Prodi type problem was 

rediscussed in de Figueiredo [ 8] and de Figueiredo Solimini [ 9] . 

( 3) Minimal surfaces 

Let M be a compact oriented surface of type (p,k), and let (N,h) 

be a compact Riemannian manifold with nonpositive sectional curvature. 

If y is a conformal structure on M compactible with its orientation, 

then we write (M,y) for the associated Riemann surface. 

For a map 0 : (M,y) -* (N,h), the energy is 

E(0) = £ /Id0|2dxdy . 
M 

Let r = {1^}1 be a set of disjoint oriented Jordan curves in N 

satisfying an irreducihility condition, which prevents the degeneracy 

of topological type. 

THEOREM 5. If <t>. : ( M , y . ) - (N,h), i = 0,1 are homotopic 

admissible conformal isolated E-minima, then there is a conformal 

structure y on M and an admissible conformal harmonic map 

<f> : (M,y) - (N,h) homotopic to both, which is not an E-minimum. 

A special case, in which M is a horded planar domain and N is 

Euclidean space R , is due to Morse-Tompkins and Shiffman [13,14,15]. 

If M is a disc or an annulus and N = R , that special case has been 

reproved by struwe [16,17], 

In proving this theorem, corollary 2 is applied. The closed convex 

set is the following 

C =«mk X 3f(p.k), 

where 3W={u £ C° n H 1 / 2 ( [ 0 , 2 K ] , R 1 ) I U i s weakly monotone , and 

/2knN 2ku _ . _ „ _ _, 
u ( - y - ) = - y - , f o r k = 0 , 1 , 2 , 3 } , 

and 3(p,k) denotes the Teichmiiller space of compact oriented surface M 

of type (p,k). The Munford compactness theorem is aonlied to verify the 

P.S. Condition. 

For details see Chang Eells [6,7]. 
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