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HIGHER REGULARITY OF WEAK 
SOLUTIONS OF STRONGLY 
NONLINEAR ELLIPTIC EQUATIONS 
C G. SIMADER 
Mathematisches Institut der Universitat Bayreuth 
Postfach 3008, D-8580 Bayreuth, West Germany 

I n a b o u n d e d o p e n s e t G C R we c o n s i d e r t h e D i r i c h l e t p r o b l e m 

N 
L u : = - Л u - l Э g (Э u ) + g (u) = f , 

± = 1 x u 
u = 0 

ЭG 

If f,g are measurable functions on G, we write (f,g): = ff*g if 

1
 G 

f-g eL (G) . As usual, a weak solution of (1) is a function 

u e H^'
2
 (G) such that g

i
(9

±
u) 6 L

1
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(н.i; 
(Э u:=u) and 

EO.u,9.(|))+ Z (g. O.u) ,3.c|)) + (g
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(u)

 f
cj 

i J- --
 i =

i j. j. J. u 

holds for all <))6c"(G). 

For the strong nonlinearities g. we assume 

= (f,<l 

(H.2) 
g. 6C (R) are non-decreasing and 

g
±
(t)-t > 0 for teR, i = 0,1,...N 

(1) 

(2) 

Existence of those weak solutions was studied by a considerable number 

of authors. Observe that the nonlinearities depend on derivatives up 

to half the order of the equation. Existence for those problems was 

first proved in [3]. Let us emphasize that all our considerations hold 

true if -A is replaced by a strongly elliptic operator of order 2m and 

the nonlinearities may depend analogously to (1) up to the derivatives 

of order m. All existence-proves lead to weak solutions such that in 

addition to (H.1) we get 

(H.3) g
i
O

i
u).3

i
u e L

1
 (G) (i = 0,1,.. .N) 

Like as in the case of linear equations two questions arise: Under 
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what conditions are the weak solutions unique? Do the weak solutions 

have better regularity properties? For star-shaped domains uniqueness 

and stability of weak solutions of (1) was proved in [ 4 ] . This result 

was considerable generalized to arbitrary domains with smooth boundary 

and to very general operators by M. Landes [ 2 ] . 

Concerning higher regularity properties, surprisingly it turns out 

that the meanwhile classical difference quotient method perfectly 

works in the underlying case to gain one more order of differenti­

ability. As far as the author knows, this method goes back to S.Agmon 

(see e.g. [l]). For the nonlinearities we assume 

Assume (H.2) and g . e C ( R ) , i = 0,1,...,N. 

For i = 1 , . . . ,N we assume 

i) g. ' is non-decreasing in [0,°°) 

ii) There exists a constant C > 1 such that U-.4) 

g. ' (-t) < Cg. ' (t) for t G R ("nearly odd") 

t 
) Let G.(t):= /g.(s)ds. Assume that G. satisfies a 

i
 Q

 l l 

A~-condition: There exists a K> 0 such that 

G
i
(2t) < KG

i
 (t) for t G R . 

There exists y > 0 such that 

.9i(t) |<Y|g
k
(t) | for t G R and i ,k = 1 , . . . ,N 

("isotropic") 

An example is given by 

g
±
(t) :=

 a i
.t|t|

P
"

1
 , a±e R, P > 1 

Then we can prove the following 

(3) 

Theorem. Assume (H.1)-(H.4). Then, for 

G'ccG we have u I e W
2
 '

 2
 (G' ) , g. ' (9 . u)-0 . 3.u)' 

G' i i l k ,G' 
Є Ľ (G1) , 

g 0 ' (u )-o k u)- Є Ľ (G') (i,k= 1 ,. .. ,N) 

and there is a constant K = K(G',G,g.) such that 
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N N 
Z / ( 9 . 3 , u) + Z f g . ' ( 9 . u ) . ( 9 . 9 v u ) z + 

i , k = 1 G' * K i , k = 1 G' 1 X 

N 
+ Z / g Q ' ( u ) O u ) 2 < K.( | | f | |2 + | | u | | 2 

k = l G f L Z ( G ) H ^ ' ^ ( G ) 

N 
+ Z / g . ( 9 . u ) . 3 . u ) 

i = 0 G X X 1 

As mentioned above, the proof is done by means of the difference quo­

tient method. We can not give details here. In any case, the proof is 

completely elementary although it demands are careful analysis. To see 

what is going on, we assume now that the weak solution is arbitrarily 

smooth and sketch how to get the a-priori-estimate of the theorem. 

Roughly spoken, one can prove with this method all those regularity 

properties which can be read of an a-priori-estimate like as in the 

theorem. 

For this purpose, let <j)6C (G) and for k = 1 , . . . ,N put 9,cf> as a test 

function in (2) and integrate at the left hand side by parts, which 

leads to 

N N 

Z (9±9ku,9i(|)) + Z (g±* (9iu) 3i9kuf9i(J>) +(g • (u) 3Ru,<J>) = 

1 = 1 ± = 1 (4) 

- -(f,9k<j>) • 

co 2 

Let now £ £ C (G) such that r, E 1 in G' . Put <J): = 9 .U 'r , in (4) which 

gives 

N 
v rr* * ^ 2 r 2 + % /9 • 9, u9„ u2C-3 • C + Z /(9.9 u) «C • 1 i k K s is 

i=1 K 

N ? ? N 

+ Z fg±* (9iu)-(9i9ku)
ZC + Z fg '(9 u ) 9 ± 9 - u 9 k u 2 r . 9 ^ + (5) 

i=1 i=1 

+ /g 0' (u)(^u)?C
2 = -(f ,9k9kuC

2)-(f ,9 ku2c9 kO 

The first, third and fifth expression at the left of (5) are that we 

have to estimate. E.g. the second admits trivally the estimate for 

e > 0 

N 
|2 Z /(9.9,uC)-Ovu)-9.c| 5 

i = 1 1 K K 
N 2 2 -1 N 2 2 

< e • Z /(9,9, u)zC + e • Z / (9, u)z(9.c) 
i=1 X k i=1 K 1 
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analogous for the right hand side of (5). Cumbersome seems the fourth 

term. To estimate it, observe g. ' (t)>0. For 6 > 0 we get: 

N . . . 
|2 I /(/gi

,(3iu).9i3ku-c) (/g7(3^a u9iC)| 
1 = 1 (6) 
N 

< 6-Z fg±' O . u H a j ^ l V + ^ V g ^ O i u ) . O k u ) 2 . O i r , ) 2 . 

To estimate the second expression on the right hand side of (6), we 

make use of the following 

Lemma: Assume (H.4). Then 

i) There is a constant C> 0 such that 

G±(t) < CG k(t) for teR and i,k = 1 , . . . ,N 

ii) There is a constant C' > 0 such that 

gi
l (t)s2 < C'.(gi(t).t+Gi(s)) 

Remark: Property ii) is no surprise if we consider e.g. g(t):=t|t|^ , 

p> 1. Then, g1 (t) = p-|t|P~1, g(t) -t = |t|P+1 and G(t) = (p+1 ) ~.1 | 11 P+1. 

By the inequality a-b < X~^aA+X' ~1-bA ' for 1 < X, X * <~, X'Vx'"1 = 1, 

we get with X: = ---—-- and therefore X1 = p 
p-1 2 

g'(t)-s2 < p.E-I.g(t).t + pT'G(s) 

from which ii) follows. The assumptions in (H.4) (especially iii)) 

guarantee Lemma 2, property ii) in general. 

By means of the Lemma we are now able to estimate the second expres­

sion at the right hand side of (6), first pointwise: 

g±' O iu)-O ku)
2 < C,(gi(9iu>3iu+GiOku)) 

< C (g± (9iu).9iu + C G k O k u ) ) . 

If we observe (H.2) and the definition of G, , we conclude 
2 

Gk(9, u) < gk(9 u)9 u. Multiplying by (9.C) / integrating and combining 

all inequalities, we have proved the desired estimate. 
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