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SOME SOLVED AND UNSOLVED 
CANONICAL PROBLEMS 
OF DIFFRACTION THEORY 
E. MEISTER 
Technica l Dni i wrsi t y Da r) ttst ad t 
Schlosgartenstr. 7, Ď 6100 - Darmstadt, West (ierma)tt) 

1. Introduction 

Mathematical diffraction theory is concerned with the following 

boundary value problem in case of an incoming or primary time-harmonic 

wave-field Re[ $ (x)e~la) l : 
Given an obstacle ft C Rn; n = 2 or 3; with boundary r = 3ft. Find the 

scattered field $ (x) in ft := Rn- ft, s.th. sc —• a ' 

(1 .1 ) (A + k 2 H (x) = 0 for x e ft sc — a 

with a wave-number k = k + ik2 £ C++- {0} fulfilling a boundary 

condition 

( 1 . 2 a ) B A $ ( x ) l l n : = $ (x)l,-, = f ( x ) of D i r i c h l e t - t y p e i s c — r sc — r — 
o r 

( 1 . 2 b ) B2[ $ s c ( x ) ] l r : = ( | _ + i P < x ) ) * s c ( x ) l r
 r 9 ( x ) 

{Neumann (p = 0) }_ t y p e < 

Impedance ( p ~* 0) 

In the case of edges E and/or vertices V C r existing the "edge 

condition" 

(1.3) $ (x) = 0(1 ) and V$ (x) e I?. (ft ) 
sc — • sc — loc a 

should hold. Besides this the scattered field should be "outgoing", 

i.e. "Sommerfeld's radiation conditions" should hold 
(1.4) $ (x) = S(e""k2r), (| i.k)* (x) = 3(e~k2r/r —^) 

sc — 3r ' sc - 2 

as r = |x|-*°° 

For smooth compact boundaries r this problem has completely been 

solved, e.g. by the boundary integral equation method (BEM) (c.f. e.g. 

COLTON-KRESS (1983) [2]) or by means of Sobolev space methods (c.f. 

e.g. LEIS (1985) [ i l l ) . Generalizations to piecewise smoothly bounded 

domains were carried out by GRISVARD (1980) [6l and COSTABEL (1984) 

[4], e.g. 

2. The Sommerfeld Half-Plane Problem 

There are a number of "canonical diffraction problems" with 

domains whose boundaries extend to infinity and having corners and 
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cusps. The most famous one is the "Sommerfeld half-plane problem", 

the first diffraction problem having been treated in a mathematically 

rigorous way (1896) I 151 . 

Applying the well-known representation formula for outgoing 

solutions of the Helmholtz equation (1 .1 ) the Sommerfeld half-plane 

problems leads to the following integral or integro-differential 

equations (of the first k ind ) of the Wiener-Hopf type: 

( 2 . 1 ) /^H^1}(klx-x'I) I(x')dx' = -4i.S> (x,0) for x > 0 
Q u pr 

in the case of the Dirichlet problem and 

2 9$ 
(2.2) (-5_ + k2) / V 1 }(k|x-x' I) Q(x')dx' = 4i •*-&• (x,0) for x > 0 

dxz 0 u d y 

in the case of the Neumann problem with the unknown jumps 

a* a$ 
(2.3) I(x') := ~ ~ (x',+0) ~ £ (x',-0) for x' > 0 

r 8y 9y ' 
and 

(2.4) Q(x') := $ (x',+0) - $ (x',-0) for x' > 0 , 

sc sc 

respectively. 

The theory of such equations, but of the second kind, in L^(R+) 

or w 'p( R )-spaces for m € Nn, 1 < p < °° has been developed by 

M.G. KREIN (1958/62 ) [9], E.Gerlach (1969) [5] and, combined with 

other integral operators than 1-convolutions, by G.THELEN (1985) I 17] . 

To solve the equations (2.1) or (2.2) on the half-line, or more 

directly the original boundary value problem, one applies a one-di­

mensional Fourier transform to the scattered wave function 
(2.5) 3 (X,y) := /°°eiXx$ (x,y)dx, X e R, y ^ O . 

sc J
 -00 sc 

The usual, or Sf-distributional Fourier transform technique leads to 

the following "function-theoretic Wiener-Hopf equations",in the case 

of a damping medium, i.e. Im k = k2 > 0, and an incoming plane wave: 

(2.6) E_(X) + i I + (X)/V X
2- k2 = [i(X + k cos e)}"1 

and 

(2.7) V j X ) + | Q +(X)Vx
2- k2 = -k sin 9 [X + k cos e l " 1 , 

respectively, for the Dirichlet and Neumann case with the unknown 
.A .A 

F-transforms E__, V_ being holomorphic for Im X < k2 and I + , Q + being 

holomorphic for Im X >-k? cos 8. The equations (2.6) and (2.7) are 

equivalent to "non-normal Riemann boundary value problems on a line" 
parallel to the real X-axis. 

y 2 2 
X - k into 
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Y_(A).Y (A), the multiplication of (2.6) and (2.7) by y and by y_ , 
-1 

respectively, then additive decomposition of Y_.[* + k cos8] and 

Y_~ A A + k cosG]" in the A-strip gives after rearrangement and 

application of Liouville's theorem the explicite solutions to eqs. 

(2.6) and (2.7) as 

( 2 . 8 ) I (A) = 2 v

/ 2k C O S 9 / 2 . Y (A)[A + k c o s 8 ] - 1 

a n d 

( 2 . 9 ) Q (A) = - 2 i v

/ 2 k s i n G / 2 . Y + ~ 1 ( A ) [ A + k c o s G ] " 1 

f o r Im A > - k 2 cosQ . 

These functions being known allow to calculate * (x,y) in both 

cases after applying an inverse F-transform and shifting the line of 

integration in the complex A-plane to get all informations relevant, 

i.e. the edge behaviour an the far field in the geometrically different 

regions. 

This functiontheoretic method has been applied successfully to a 

big number of canonical problems in microwave theory and to other 

diffraction problems, e.g. for systems of parallel semi-infinite pla­

tes (A.E.Heins (1948) [7]), or cascades of such (J.F. Carlson, A.E. 

Heins (1946/50) [ l l ), or cylindrical semi-infinite pipes (e.g. L.A. 

Vajnshtejn (1948) [18]). 

The "canonical mixed Sommerfeld half-plane problems", where there 

are given different boundary conditions on the faces 6 of the semi-

2 — 

infinite screen 6 := {(x,y) G R
 :
 y = 0, x > 0} , may be transformed by 

the same Fourier technique into a 2X2-functiontheoretic system of 

Wiener-Hopf equations 

(2.10) i_(A) = K(A)$ (A) + r(A) for -k cos8 < Im A < k
2 

with the known 2X2-function matrix 

V( A-k)/(A+k) 1 
(2.11) K(A) 

-1 >/(A+k)/(A-k) 

and the unknown 2Xi-function-vectors 

/A-k . E (A ) 
(2.12) Ф (A) 

- / y/X+k . * (A,-0) 

i+<*> ••= 4 ( ̂  r— 
\ *^(A,+0)/>A+k 

The matrix K(A) - or a closely related one - has been factorized 
into [ g _ ( A ) l - 1

 K
+
(A) only (1982/83) by A.E.Heins [ 8l , (1981) by 

A.D.Rawlins [14] and (1981/85) by the present author [ 12] , indepen­

dently by different methods. Now the solution of the mixed Sommerfeld 
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problem may be written down explicitely and gives full information on 

the behaviour of * , V$ as r — 0 and r -» °°, respectively, which is 

now different at the edge compared to the one-boundary-condition-prob­

lems. The corresponding mixed boundary value problems for systems of 

parallel semi-infinite plates or a tube are unsolved up to now due to 

the lack of a known explicit factorization of the 2X2-function matrices 

involved (c.f. e.g. the authors paper (1984 /85 ) [12]!). 

The Sommerfeld half-plane problems have been generalized to the 

so called "Quarter-plane Problems of Diffraction Theory" where the 
3 3 

half-plane, i.e. the screen 6 C R , is replaced by a screen £ C R 
2 3 

which is the quarter-plane R : = {(x,y,z) C R : z = 0, x > 0, z > 0} 
with two semi-infinite lines as edges meeting in the corner E at the 

2 
origin. Like for an arbitrary plane screen I C R the 2-dimensional 

xy ~ 
F-transform applied to the unknown scattered field $ (x), x C RJ 

sc — — 

leads to the following "Two-dimensional Wiener-Hopf functional equa­

tions" 

(2.13) Y-1(X1,X2)i;(X1,X2) - JR2U(X1,X2,0) = - * p r ( R2 u(X 1,X 2,0) 

and 

(2.14) Y(X1,X2)6I(X1,X2) - (|i*rR2Xl(X1,X2,0) = -(f-* p r) R-\ z (^ *2,0 > 
2 2 2" 2 

A + A - k and the indices I and R \z refer to 

the 2D-F-transforms of the restrictions to E and R \z, respectively. 

Up to now there exists no explicit factorization of the multi-

plication operator y with respect to the complementary projectors P r 

Qz := I - Pz in spaces FL
P(R2) or FWS'P(R2), s > 0, 1 < p < 2 (°°) . But 

there exists now a very general theory for "general Wiener-Hopf or 

Toeplitz operators" of the form 
( 2- 1 5 ) P2A|plX

 U = V G P 2 Y 

for bijective continuous operators A : X — Y acting between two Banach-

spaces X,Y with bounded projectors P G-S^X), P Gy(Y) . This theory by 

F.-O.Speck (1983/85) [16] gives necessary and sufficient conditions for 

the general invertibility and Fredholm property of operators of type 

(2,15) in dependance on factorization properties of A w.r.t. (P-jP^). 

3. Canonical Transmission Problems 

Another big class of canonical diffraction problems exists given 

by the following specification: 

Given a primary time-harmonic wave-field Ret $ (x)e 1 and a region 

fi
1
c R r n = 2 or 3, and finitely many disjoint regions fi ,,,,,1. C Rn

f 

s. th. U u. = R .. Then one looks for a scattered field $ (x), 
3 = 1 3 sc — 

x G Rn, s. th. $ (x) |n € C
2(fi. ) n C1(íž.\ {0}) and 

se — lil. 3 3 
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(3.1) (A + k?)« (x) = 0 in n., j = 1,...,N , 
j sc — j 

fulfilling the "transmission conditions" 

(3.2a) $ .(x) - • (x) = F. (x) 
SC,:J— sc,t— Dl "-

and on Ofi.n on, * 0 

(3.2b) p — | £ L ! ( X ) + p —|SLd:(x) = G.-(x) 3 dn- — 1 9n-̂  — jl — 

with prescribed data F.., G., from the primary field on the common 

boundary parts 9ft.n an 

Additionally the edge conditions *^(x) = *(x)|o = 0(1) and V4>.e 
2 J 1" j J 

L.. (si.) and the radiation condition for *(x) as Ixl = r - °° have to loc j 1 
hold. 

Again in the case of smoothly bounded domains with compact bounda­

ries 98. this "transmission or interface problem" has been solved by 

the boundary integral method and in the case of two-dimensional polygo­

nal domains by M.Costabel and E.Stephan (1985) [3]. 

In the special case of two different media (i.e. N = 2) and a 

plane interface (i.e. 3ft = 9ft = Rxy or = R ) the problem is elementary 

and gives, for a plane wave as the primary wave-function, the well-

known relations from Snellius' law and the reflection and transmission 

coefficients explicitely. The corresponding "two-dimensional Sommerfeld 

half-plane problems with two media" are unsolved up to now - as far as 

an explicit representation is concerned - due to the unknown matrix 

factors of the 2X2-Wiener-Hopf function matrices involved here having 

two different square roots y/ A2- k2 and y/ A2- k2 to be taken into 

account I 121 . 

A very important canonical transmission problem is the so-called 
2 2 2 

"Dielectric Wedge Problem", i.e. the case of ft1= R++ and ft2 = R \ R++ in 
2 3 

R or the corresponding "Dielectric Octant Problem" in R -space: This 

has been generalized to the "Four-Quadrant-Transmission-Problem" in R 

with the four quadrants filled with different media. Applying 2D-

Fouriertransformation the restrictions of the unknown scattered field 

may be represented by the ID - F - transformed Cauchy-data on the semi-

infinite lines, the boundaries of the quadrants. For <J> (A , A ) one 

gets e.g. 

= ( 1 )c* ) + c
(1)(x.) + n . . ? i n ( x „ ) + 

(3.3) V W = l Í V f l U l ) + % U l } + Í X l ' f 
2 2 ' 

+ ^ 2 1 ) U
2
) ] ' (X1 + *2 " k l ) _ 1 f ° r I m Xl' I m A 2 > "ei'"B2 

with $2 + 3^ < (Jmkl)
2. 

Due to the transmission conditions (3.2) the total sum of all nu-
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merators of the *.(x ,X^) is a known function Z(X,,X ). Dividing by 
3 2l* 2 1' 2 ^ J 

the known N(X ,X ,k ) with an appropriate k £ C one arrives at the 

"Four-part Wiener-Hopf functional equation" 

4 2 2 Z(X X ) 

(3-4) . V 1 + ? ̂ *2>V (vv = „,, r „-. 
3=1 X1+X2vk

 J N(X1,X2,k ) 
2 

holding for a pair of strips of C . Here we have 

(3.5) ^ C V V := V(X1'V := ( F2 XQ j
S P2 1* ) ( Xl' X2 ) 

It has been shown (e.g. by N.Latz (1968) [10]) that in the case of 

Im k. > 0 the auxiliary k may be chosen in such a way that eq. (3.4) is 

uniquely solvable in FLP(R2), 1 < p < 2, for any * r(x) e L
P(R2). The 

present author has derived quite recently (1984) [13] a 4X4-system of 

integral equations for the Fourier-cosine transforms of the normal 

derivatives on the bounding semi-axis's of the four quadrants Q.. This 

system is uniquely solvable in the case of Im k. > 0 and Ik.- k I and 

Ipj- pvl small by Banach's fixed point theorem in the spaces (lft( R +))
4 

for 2 < q < °°, but the general case of four different wave numbers k. 

is still unsolved. 

References 

[1 ] CARLSON,J.F., A.E.HEINS, The reflection of electromagnetic waves by an infinite set of plates, I: 
Quart.Appl. Math. 4(1946),313-329, II: 5(1947),82-88, III: 8(1950),281-291. 

[2] COLTON,D. R.KREIS, Integral Equations in Scattering Theory, J.Wiley, New York et al. 1983. 
[3] COSTABEL.M., E.STEPHAN, A direct boundary integral equation method for transmission problems, 

Journ. Math, Appl. 106(1985), 367-413. 
[4] COSTABEL,M., Starke Elliptizitat von Randintegraloperatoren erster Art., Habil.-srift=preprint 

Nr. 868, FB Mathematik TH Darmstadt, Dez. 1984. 
[5] GERLACH,E., Zur Theorie einer Klasse von Integrodifferentialgleichungen, Dissert. TU Berlin 1969. 
[6] GRISVARD,P., Boundary value problems in non-smooth domains, Univ. of Maryland, MD 20742 

Lecture Notes 19(1980). 
[7 ] HEINS.A.E., The radiation and transmission properties of a pair of semi-infinite parallel plates, I. Quart. 

Appl. Math. 6(1948), «i 57-166, II: 215-220. 
[8] HEINS,A.E., The Sommerfeld Half-Plane Problem Revusited I: The Solution of a pair of Coupled 

Wiener-Hopf Integral Equations, Math. Meth. Appl, Sci. 4(1982), 74-90, II: 5(1983), 14-21. 
[9] KREIN,M. G, Integral Equations on the Half-Plane with Kernels Depending upon the Difference of the 

Arguments, Amer. Math. Soc. Iransl. 22(1962), 163-288. 
[10] LATZ,N., Untersuchungen uber ein simlares Ubergangswertproblem mis den Theorie der Beugung 

elektromagnetische Wellen an dielektrischen Keilen, Dissert. U Saarbrucken 1968. 
[11 ] LEIS,R, Lectures on initial-boundary value problems in mathematical physics, B.G.Teubner-J. Wiley, 

Stuttgart-New York (1985 to appear). 
[12] MEISTER,E., some multiple-part Wiener-Hopf problems in mathematical physics, Banach Center 

Public, (to appear 1985) = Preprint No. 600, FB Math. TH Darmstadt, Mai 1981. 
[13] MEISTER,E., Integral equations for the Fourier transformed boundary values for the transmission 

problems for right angled wedges and octants, Math. Meth. Appl. Sci. 7. 
[14] RAWLINS,A.D., The explicit Wiener-Hopf factorization of a special matrix, Z. Angew.Math.Mech. 

61(1981),527-528. 
[15] SOMMERFELD,A.,iWathematische Theorie der Diffraktion, Math. Ann. 47(1896), 317-374. 
[16] SPECK,F.-0., General Wiener-Hopf factorization methods, Res. Notes in Math., vol. 119, Pitman, 

Boston etal . 1985 
[17] THELEN-ROSEMANN-NIEDRIG,G., Zur Fredholmtheorie singularer Integro-Differentialoperatoren 

auf der Halbachse, Diss. TH Darmstadt 1985. 


		webmaster@dml.cz
	2012-09-13T03:01:40+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




