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ON GEL’FAND’S METHOD OF CHASING
FOR SILVING MULTIPOINT
BOUNDARY VALUE PROBLEMS

R. P. AGARWAL
Department of Mathematics, National University of Singapore
Singapore 0511

Recently, for multipoint boundary value problems for ordinary
differential equations several constructive methods have been suggested, e.g.
the method of complementary functions and the method of adjoints [1,2], the
integral equations method [3,4], initial adjusting method [12,16], the method
of quasilinearization [5,8] etc. Here, we shall report the formulation of
another practical shooting method, namely the method of chasing for nth order

ordinary linear differential equation

e (n-1)

n
+ [ p(0) x = £(t) ¢
i=1

subject to linearly independent multipoint boundary conditions

ﬂzl S x(k)(ai) = A, 1<i<n (2)
k=0

where a; < a, € ooe € a, (al < an). This method is originally developed for
second order differential equations by Gel'fand and Lokutsiyevskii and first
appeared in english literature only recently [9]. Na [11] has briefly
described the method and given different formulations for the different
particular cases of (1), (2). The general systems derived here include the
systems given by Na [11] as special cases. The power of the method is
illustrated by solving known Holt's problem.

Since the boundary conditions (2) are assumed to be linearly independent,
at the point a; at least one of the cjy, 0 < k €< n-1 is not zero. Let 15 #0
then, at this point a; the boundary condition (2) can be rewritten as

-1
@ " (k)
X (ai) = 7 dik x (ai) +oa, i<ic<n (3)
k9
#3
A
where dj) = - Ei$ 3 0<k <n-1, k= j and o = El_

ij ij



In the differential equation (1), we begin with the assumption that
pl(t) = 0, so that
n

=~ ] p(t)x
1=2 *

= (1) 4 ey, )

Now, for the boundary condition (3) we assume that the solution x(t) of (4)

satisfies (n-1)th order linear differential equation

Py = z 4, (0 x0) + o (0 (5

k39

where the n functions dik(t); 0 <k <n-1, k # j and o;(t) are to be

determined.

Differentiating (5) once, we get

LA LT (a,, ©x e) + ap (0301 + a0, )

k29

Next, we shall use (5) to eliminate the term x(m=1)(t) from (6), however it
depends on a particular value of j and we need to consider four different

cases

(1) 3 = 0, n > 3 : From (5), we have

n-2

(n-1)
x (t) = -————-—(—TIX(C) - Z d. (t)x
i,n-1 ik

®e) - a (o)1, )

Using (7) in (6) and rearranging the terms, we get

[dy (t) +di ()]
X(n)(t) - ,n=2 i,n-1 x(t)
i ,n=1 (t)
(t) +d;} (t) di (t)
1 n-2 i,n-1 il
+ [ d, () - _——__-T_TIX'(t)
di,n—l(t) d2 (t) il di.n-l t
i,n-1
n-2d, _,(t) +d] __ (t) d; g (8) +df (2)
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Comparing (4) and (8), we find the system of n differential equations
da! t) = - 2
l,n-l( ) di,n—Z(t) + pn(t)di,n_l(t)

s (8) = P (0)dy (€)= dy g-1(8) * pn(t)di,n—l(t)dik(t); k=n-2,n-3,...,2

dil(t) =1+ p(t)d 1(t)dil(t) + pn—l(t)di,n—l(t) (9)

i,n-

af () = - £(¢) di,n—l(t) + p () di,n—l(t)ai(t)'

We also desire that this solution x(t) must satisfy the boundary

condition (3). For this, we compare (3) and (5) at the point a; and find

dy(ag) =dg, 1 <k<nil (10)

ui(ai) = oy
In the rest we proceed as for the case j = 0 and obtain the following

systems

(ii) 1 € j < n-3

, ~ 2
di,n-l(t) = - di,n—Z(t) - di,j-l(t) di,n-l(t) + pn—j(t)di,n—l(t)
A (0) = = dy o (0) = dy g (0) dy (O + (P (B) + P (t)dy (£))dy o (E)

k = n-2, n-3,e00, 13 kK # 3, 3 +1
4] (0) = 1= dy 5 (0 gy (8) + gy () F Py (D)4 5y ()4 oy (O)
d3o(t) = = dy 51 ()4, (0) + (py(6) + Py ()3 o()dy oy (€) an

aj(t) = =d; 5o (O)a(e) + (py_g(E)ay(e) = £(0))dy ,(8)

d. (a,) =d, ; 0<k<n-l, k=3
ik 24 ik (12

mi(ai) = .

(1ii) j = n-2

, _ 2
4 (=1 =dy (0 a0+ Py (0)dy L (©)



di (e) = - di’k_l(t) + (P (V) + Pz(t)dik(t))di’n_l(t) - di,n-3(t)d1k(t)’
1 <k < n-3
aio(t) = - di,n_3(t)di’0(t) + (p (t) + p2(t)di’0(t))di’n__l(t) (13)
“i(t) - - di,n_3(t)ui(t) + (- £(t) + pz(t)ui(t))di,n_l(t)
dik(ai) =dy 3 0<k< n-1, k # n-2
a,(ay) = ay. (14)
(iv) j = n-1

A () = =dy g (8) =dy | (e)dg (€) = pp (£), 1 <k <n2
dio(t) = - di'n_z(t)dio(t) = po(t) (15)
aj'_(t) = - di.n_z(t)ai(t) + f(t)
dik(ai) = dik; 0 < k < n=2 (16)
ui(ai) = a.

For the particular value of j, we integrate the above appropriate system

from the point a; to a, and collect the values of dik(an); 0<k <n-1, k#]

n
and qi(an). Thus, (5) provides a new boundary relation at the point a,

Doy - “g‘ q
k39

Let N be the number of different boundary points i.e. a; < ay <.ee ay =

1k(an)x(k)(an) +o,(a). an

a, (n >N >2) and m(aj) represents the number of boundary relations (3)

N

prescribed at the point ay and hence Zm(aj) =n, Thus, in (3) we have m(an)
i=1

boundary relations at the point a, and to find x(j)(an), 0 < j < n-1 we need

n-m(an) more new relations (17) i.e. we need to integrate n-m(an) appropriate

differential systems.

Finally, from the obtained values of x(j)(an), 0 € j < n-1 we integrate



backward differential equation (4) and obtain the required solution.

With the help of the following guidelines unnecessary computation can be

avoided : (a) m(a,) = max m(aj), otherwise the role of the point a;
1<3<N
with the point ay where m(aj) is maximum can be interchanged. (b) We need to

integrate n-m(a,) times but not necessarily different differential systems,
speclally because differential system does not change as long as in (3) j is

same. In fact, we can have at most n different differential systems.

For the case p;(t) £ 0, we rewrite the differential equation (1) as

(n-1)

n
(e "1 = = f peorp (0x ™+ p(o)e(e) (18)
i=2

where P(t) = EXP(I: Pl(s)ds).
1

Assumption that the solution of (18) should satisfy (n-1)th order linear
differential equation

n=1
agy@xP @) = 7 a0 + a0 19)

79

with di,n—l(t) = P(t) brings the problem in the realm of the foregoing

analysis.

Example. The two point boundary value problem
x''= 2m + 1 + tz)x (20)

x(0) = B, x(=) = 0 (21)

where m and B are specified constants, known as Holt's problem [10] is a
typical example where usual shooting methods fail [10,13,14,15]. Faced with
this difficulty Holt [10] used a finite difference method, whereas Osborne
[13] used multiple shooting method and Roberts and Shipman [14,15] used a
multipoint approach.

For this problem the solution representation (5) reduces to
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x(8) = dg (£)x'(8) + ag(t) (22)

and the case (1ii) provides the differential system to be integrated

o) =1 - (2m+ 1+ tz)dgl(t) (23)
' - - 2
ao(t) 2n+1 +t )dOI(t)ao(t)

together with the initial conditions

d01(0) =0, uO(O) = B. (24)

We use fourth order Runge-Kutta method with step size 0.0l and obtain
dOI(c), ao(t) at t = 18.0l. These values are used to calculate x'(18.01) from
(22). The differential equation (20) is integrated backward with the given
x(18.01) = 0 and the obtained value of x'(18.01) using fourth order Runge-
Kutta method with the same step size. The value t = 18.01 has been chosen in

view of restricted Computer capabilities.

The solution thus obtained has been presented in Tables 1-3 for different
choices of m and B. These tables also contain solutions of the problem
obtained earlier in [10,13,14,15]. For further details of the method and its
applications see [6,7].
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Table l.m = 0,8 = 1
. Present Complementary Finite Solution by Roberts and
Solution Functions [8] Difference Osborne [6] Shipman [7]
0 0.9999876 E 00  0.10000000 E 01 0.100000 E 01 0.1000 E 01 0.10000000 E 01
1 0.2593404 E 00 0.15729920 E 00 0.157300 E 00 0.2593 E 00 0.15729921 E 00
2 0.3456397 E-01  0.46777349 E-02 0.467778 E-02 0.3455 E-01 0.46777350 E-02
3 0.1988532 E-02 0.22090497 E-04 0.220908 E-04 0.1987 E-02 0.22090497 E-04
4 0.4595871 E-04  0.15417257 E~Q7 0.154175 E-07 0.4590 E-04 0.15417259 E-07
5 0.4125652 E-06 0.15366706 E-11 0.153749 E-11 0.4188 E-06 0.15374602 E-11
6 0.1413020 E-08 -0.73163560 E~15 0.215201 E-16 0.1409 E-08 0.21519753 E-16
7 0.1827268 E-11 -0.75311525 E-15 0.418390 E-22 0,1821 E-11 0.41838334 E-22
8 0.8863389 E-15 -0.75315520 E-15 0.112244 E-28 0.8825 E-15 0.11224343 E-28
9 0.1605597 E-18 0.413703 E-36 0.1597 E-18 0.41370659 E-36
10 0.1082885 E-22 0.208844 E-44 0.1058 E-22 0.20895932 E-44
11 0.2713141 E-27 0.144078 E-53 0.12279100 E-49
12 0.2521085 E-32 0.135609 E-63 0.13487374 E-49
13 0.8677126 E-38 0.17299316 E-60
14 0.1105113 E-43 -0.25496486 E-65
15 0.5203999 E-50
16 0.9055032 E-50
17 0.5818867 E-64
18 0.4179442 E-72
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Table 2. m = 1, = n /2
t Present Complementary Finite
Solution Function (8] Differences [5]
0 0.5641878 E 00 0.56418960 E 00 0.5642 E 00
1 0.8285570 E-01 0.50254543 E-01 0.5026 E-01
2 0.7226698 E-02 0.97802274 E-03 0.9782 E-03
3 0.3020138 E-03 0.33550350 E-05 0.3356 E-05
4 0.5431819 E-05 0.18221222 E-08 0.1823 E-08
5 0.3975088 E-07 0.12367523 E-12 0.1482 E-12
6 0.1146879 E-09 -0.29349128 E-13 0.1747 E-17
7 0.1279827 E-12 -0.34242684 E-13 0.2931 E-23
8 0.5456289 E-16 -0.39134491 E-13 0.6912 E-30
9 0.8813160 E-20
10 0.5361614 E-24
11 0.1223266 E-28
12 0.1043287 E-33
13 0.3317918 E-39
14 0.3926980 E-45
15 0.1727057 E-51
16 0.2818780 E-58
17 0.1705581 E-65
18 0.1160366 E-73
Table 3. m = 2,8 =1/,
Present Complementary Finite
Solution Functions [8] Differences [5]
0 0.2500006 E 00 0.25000000 E 00 0.2500 E 00
1 0.2340787 E-01 0.14197530 E-01 0.1420 E-01
2 0.1414359 E-02 0.19141103 E-03 0.1914 E-03
3 0.4411547 E-04 0.49007176 E-06 0.4901 E-06
4 0.6261059 E-06 0.20999802 E-08 0.2101 E-08
5 0.3764660 E-08 -0.36865462 E-13 0.1403 E-13
6 0.9193294 E-11 -0.72849101 E-13 0.1400 E-18
7 0.8879995 E-14 -0.98795539 E-13 0.2034 E-24
8 0.3334327 E-17 -0.12873356 E-12 0.4224 E-31
9 0.4809239 E-21
10 0.2641945 E-25
11 0.5493305 E-30
12 0.4302831 E-35
13 0.1265030 E-40
14 0.1391954 E-46
15 0.5719099 E-53
16 0.8757835 E-60
17 0.4990734 E-67
18 0.3216635 E~75
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