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ERROR ESTIMATES FOR FINITE ELEMENT
METHODS FOR SEMILINEAR PARABOLIC
PROBLEMS WITH NONSMOOTH DATA

V. THOMEE

Department of Mathematics, Chaliners University of Techiology
S-41296 Goteborg, Sweden

We shall survey some recent work on the numerical solution of the

semilinear initial boundary value problem

»*

1) u - Au = f(uw in QxI, I=(0,t 1,
u=0 on 3QxIl,
w(0) =v in Q,

where  a bounded domain in Rd with a sufficiently smooth boundary 4Q,
and f 1s a smooth function on R for which we assume for simplicity
that f and f' are bounded. Such an assumption is normally reasonable
only if the solution of (1) is known a priori to be bounded, |u|¢<B,
say, but if this is the case f may be modified if necessary for |u[)B
to satisfy our assumption, without changing the solution of (1).

For spatial discretization of (1), let Sthé) = Hf)( Q2 be a family

of finite-dimensional spaces parametrized by a small positive

parameter h and let the semidiscrete solution u :f—oSh be defined by

h
2) (uh,t,x)ﬂ Vuh,vX) = (f(uh),x), for xESh, tel,
0) =
uh( ) vy € Sh’
where (.,.) is the standard inner product in L_(Q .

2

In order to discuss the error in (2) we assume that Sh is such

that the corresponding linear elliptic problem admits an O( n") error
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estimate in L2=L2(Q). More precisely, we assume that the elliptic

projection Pl' i.e. the orthogonal projection onto S, with respect to

h

the Dirichlet inner product (Vu,vVw), satisfies, for some r:2 and some
constant M,

(D WP, u-ull ¢ Mh Hull s for veH NHT,
1 ler 0

where ll.Il denotes the norm in LZ' It is then well known that if u is

sufficiently smooth on the closed interval I—, and if the discrete

initial data v, are sui tably chosen, then

IIuh(t)—u(t)ll < C( u,ﬂ)hr, for tel.

To guarantee that u is smooth enough for this result, both
smoothness of v and compatiblity conditions between v and the
differential equation at 9Q for t=0 are necessary. For instance, in
the linear homogeneous case (f=0 in (1)) it was shown in Bramble,
Schatz, Thomée and Wahlbin [3] that

/2)

Bu () - wt)l < Ch¥lol for veD((-A " , tel,
h r

H
which thus reguires A‘julaQ=0 for j{r/2. Such requirements are not
always satisfied in practice and it is therefore of interest to
analyze the error for nonsmooth or incompatible data. Note that the
solution of (1) will always be smooth for positive time. For the
linear homogeneous equation this may be expressed by saying that the
Laplacian generates an analytic semigroup E(t)=exp(At) and that

u(t)=E(t)v satisfies
(a) NECO ol ¢ ct (AT where Hull. =i(-4 2o,
uP H® H®

For the linear homogeneous equation the nonswmooth data situation
has been investigated in Blair [2]1, Helfrich (51, Bramble, Schatz,
Thomée and Wahlbin [3] and later papers (cf. Thomée [71). In this

case, it may be shown using the smoothness property (4) that if v is

chosen as P_ v, the L2 projection of v onto S then

(o) h”
a+oc, -o/2
9 Iluh(t)—u(t)ll < Ch t ||v||.a, for O<agatosr.
H
In particular, optimal order convergence is attained for t positive

even if v is only in L2. A similar result showing O( n" convergence



for positive time without initial reqularity is known also for the
linear inhomogeneous problem, cf. Thomee [7].

In the semilinear situation the following result has been proved
in Johnson, Larsson, Thomée and Wahlbin [6].
Theorem 1. Let u be a solution of (1) with Hlull<p. Assume further that
(3) is satisfied (with r>2) and let uh be the solution of (2) with
uh=Pou. Then there exists a constant C=C(p,M such that

2 2

Hu (t)-ut )l < Ch2(t Y+ |1og(h

h /) P, for tel.

The above result thus shows that for r=2 the error in the
semilinear case is essentially of the same order as for the linear
homogeneous equation. For r)2, however, the result of Theorem ! is
weaker than the case a=0 of (5). The reason why the above argument
fails to yield higher order convergence than second is related to the
lack of integrability of the right hand side of (5) for o0)2, a=0. In
spite of this, it may be shown that an analogue of (5) holds, in the
sense that the convergence rate in L2 at positive time is almost two
powers of h higher than the order of regularity of the initial data
(up to the optimal order O n .

It may be shown that Theorem | is, in fact, essentially sharp in
the sense that an.estimate of the form
(6) lu (t )-ult DIl ¢ Clp,M,t

h "0 0 -

cannot hold for any o>2 and t

o
b lutx,t) | ¢ B,
0)O, regardless of the value of r. (Note
that the requirement that u is bounded is more stringent than
boundedness of llvll.) We shall sketch an example to indicate this.

Consider thus the problem

7) u - u = flw for xeJ=[0,11, t=eI,

w0,t) = wi,t) = O,

u(x,0 = vix),
2 .
where f(w = u° for |u| ¢ B. Let h=1/N, KJ=Jh, Jo=(x ,x_ ) and

consider the semidiscrete analogue using the finite dimensional space
S, = (X£C(D; K[Jns m__, for n=0,...,N-1; x(0)=x(1)=03.
For the initial wvalues we choose

uvix) = v“(x) = ¥{Nx),
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wvhere ¥ is a not identically vanishing function of the form

r+l1

¥ix) = Z. ¥.sin njx
i=1 7 JX,
which is orthogonal to "r-l on J. Note that YN is then orthogonal to
Sh, and also that, independently of N,
r+i
[ <z Y. =
NL p | J' P

where p may be chosen smaller than B. The exact solution of (7) is
— »*
then also smaller than B in wodulus on I=[0,t ] with t“ sui tably

small, independently of N. Since v =P v =0, by the construction

h~"N,h”" 0°N

of v ve have u (t)=0 on I and hence e(t)=u (t)-u(t)=-u(t). Using

N’ h h
comparison theorems and some Fourier series arguments, one may show

for u=uy that

fleCt) Il = IIuN(t)II > C/N:Z = Chz.

Hence an inequality such as (6) is not possible for o>2. We may think
of this as an example of nonlinear interaction of Fourier modes.

We shall now briefly consider the discretization of equations
such as (1) and (2) with respect to the time variable. Consider thus a
semi linear problem of the form
8) du/dt + Au = f(w for tel,

u(0) = v,
where A is a positive definite selfadjoint linear but not necessarily
bounded operator in a Hilbert space H, and where f is bounded together
with its Fréchet derivative.

For the approximate solution of (8) we introduce a time step k
and let UnEH be the approximation of u(tn), tn=nk, defined by a scheme
of the form
(9 U =EUn+kF(k,Un), n=0,1,2,...

n+l k

Uo=u.

Here Ek=r( kfA) where r()\) is a rational function which is such that for
some p21,

(10 rn = e+ 0aP*Y  as as0,

and such that

1) [renr | ¢ 8 for X > O.



Further F(k,$) is such that (9) 1s consistent wvith (8). More

precisely, assume for small k, with .1 the norm in H,

12) WFECk,¢$) - F(k," 1l < Cit¢ - i

and

13) lIAhl(F(k,«#) - ECHIl o CkRCHASIE + 1) for ¢cDCA) .

A simple example is provided by the linearized backward Euler

method,

(@] -u ) /k + AU
n

= L
nel £Cu

n+i

which is of this form with r{(X) = 1/(1+X) and F(k,‘P):EkN'{’) and which
satisfies (10) wnth p=1, as well as (11), (12) and (13).

We first recall a nonsmooth data error estimate by Baker, Bramble
and Thomée [1] (see also [7]1) for the linear homogeneous equation, £f=z0
in (8) and the corresponding discrete scheme (9) with F(k,?¥) =0:

WU - wCe i< Ckpt;pnuu for veH, t el.

This result may he combined with the corresponding result for
discretization in space of (1) to yield error bounds for totally
discrete schemes of order OCh"+kP) for t positive without smoothness
assumptions on the initial data.

In the semilinear situation we have the following nonsmooth data
error estimate by Crouzeix and Thomée [41.

Theorem 2. Under our present assumptions we have
IIIJn - u(tn)ll < C(P)k(t;llog(tnfllk) + (log(trﬂl/k))z) for livii<p.

This result may again be comhined with Theorem 1 concerning
discretization in space to show an essentially O h2+k) convergence
result for the complete discretization of (1), without any other
requirements for the initial data than ‘.’ELz(Q).

In the same way as for the semidiscrete equation, the
nonlinearity limits the order of convergence possible in the case of
non-smooth data. Thus, in particular, one may show by an example that
for a Runge-Eutta type wmethod of order of accuracy p)1l and if s)1 then

it is not possible to show

HU_ - u(t Ol < COpK® for Hvli<p, t _=t>O.
n n n
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